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ABSTRACT 

Approximately 50 – 60% of all human proteins are glycosylated. Glycosylation can not only 

affect the structure of proteins, but also their biological activity, serum half-life, 

pharmacokinetics, pharmacodynamics, and immunogenicity. For biotechnologically derived 

proteins, analysis of glycosylation patterns is thus of utmost importance. Standard techniques are 

based on high performance liquid chromatography, mass spectrometry and capillary 

electrophoresis. Lectin microarrays are an orthogonal tool, which is very promising for studying 

glycosylation patterns of intact proteins. However, though the advantages of lectin arrays for the 

analysis of glycoproteins have been discussed especially in review articles currently only a 

handful of original publications are available, which are presenting data about therapeutic 

proteins analyzed with this promising technology. Within this review article, important aspects 

for analysis of therapeutic glycoproteins are highlighted from the perspective of the lectin array 

technology. This review article includes generation of cell lines for the production of therapeutic 

proteins, influence of cell culture conditions on glycosylation, glycosylated antibodies, and their 

effector functions, glycoengineering, regulatory guidance for biosimilars, and methods for 

glycosylation analysis with special emphasis on lectin microarrays. The available literature 

proves that especially the lectin array technology is an upcoming tool for screening the 

glycosylation pattern of biotechnologically derived proteins. The technology is also versatile and 

more applications will be utilized in the near future for example for biomarker resarch and 

application as a diagnostic tool. 
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1. Introduction  

The major characteristics of a protein are 

determined first by its primary structure and 

amino acid sequence. The next levels are 

secondary, tertiary, and quaternary structures. 

Furthermore, protein features can also be 

modified by posttranslational modifications 

including glycosylations, an enzymatic process 

that attaches glycans to proteins, lipids, or other 

organic molecules. Approximately 50 – 60% of 

human proteins get some kind of glycosylation 

usually by the addition of N- or O-linked 

glycans.
1, 2

 Differences in glycosylation 

patterns exist at every level of biological 

organization, between species, tissues, cell 

types, and proteins within the same organism.
3
 

In eukaryotic cells, glycans are produced and 

maturated in the endoplasmic reticulum and 

Golgi apparatus and are normally a mixture of 

different N-linked and O-linked structures.
4
 

Glycosylation not only affects the structure of 

proteins, but also their biological activity, 

serum half-life, pharmacokinetics (PK), 

pharmacodynamics (PD) and immunogenicity.
5,

 
6
 

Therapeutic proteins are the most promising 

class of glycosylated biopharmaceuticals due 

e.g. to successful treatment of cancer and 

immune disorders. Biopharmaceuticals 

currently represent the fastest growing sector of 

the pharmaceutical industry and there is a 

tremendous rush by many companies 

worldwide to develop biosimilar versions of 

innovator products.
7, 8

 

Analysis of antibody glycosylation patterns is 

thus of utmost importance. Standard physico-

chemical techniques are based on high 

performance liquid chromatography (HPLC), 

mass spectrometry (MS), and capillary 

electrophoresis (CE).
8, 10

 The application of 

lectins as a class of molecules that can 

specifically bind carbohydrate-protein 

structures has evolved in the last years in 

combination with microarrays as a promising 

additional tool for studying the glycosylation 

patterns of proteins.
11 

However, though the 

advantages of lectin arrays for the analysis of 

glycoproteins had been discussed in several 

peer-reviewed articles to date only a handful of 

original publications are available, which are 
presenting data about therapeutic proteins 

analyzed with this promising platform 

technology. In this review, we thus want to 

highlight aspects for the analysis of therapeutic 

glycoproteins from the perspective of the lectin 

array technology. 

2. Eucaryotic Cell Lines for the Production 

of Therapeutic Proteins 

Eucaryotic cell lines have emerged as a 

preferred source for the production of human 

therapeutic proteins. Significant differences in 

the glycosylation pattern of recombinant 

proteins do not only exist when expressed in 

yeast, insect and mammalian cells but also 

between different mammalian cell lines.
1, 2

 

Even individual transgenic animals showed 

slight inter-individual differences.
12

 

Human cell lines seem to be the most genuine 

and logical choice for biotechnological 

production
13

 but are nowadays rarely 

employed. As glycosylation profiles of 

eukaryotic expression systems differ from 

human physiological pathways a variety of 

glycosylation strategies have been proposed for 

humanizing the glycosylation pathways.
14

 In 

this respect, also differences in modifications of 

recombinant mAbs in comparison to those of 

endogenous immunoglobulin G (IgG) 

molecules were frequently observed.
15

 In order 

to adequately select a cell line for the 

production of a therapeutic protein a number of 

aspects need to be considered including cell 

culture conditions. 

3. Cell Culture Conditions and Influence 

on Glycosylation 

Glycosylation and optimization of cell culture 

processes have many implications for the 
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biotechnology industry.
16, 17

 The degree of 

glycosylation depends in first line on the cell 

line itself due to differences in activities of 

cellular metabolism and / or expression of  

glycosyltransferase enzymes. In addition, every 
single cell-culture condition may influence the 

glycosylation pattern including the mode of 

culture operation, incubation conditions, 

changes in supplements, growth rate, and 

amount of generated protein.
3, 18

 If properly 

controlled, the quality of a recombinant product 

in terms of O- and N-linked oligosaccharides 

can be stable.
19

 The majority of reports, 

however, indicate that even minor differences 

in growth conditions can result into major 

differences of glycosylation patterns. 

Aghamohseni et al. evaluated the impact of 

operating conditions on the glycosylation 

pattern of humanized camelid (= single 

domain) mAb and there was a tradeoff between 

cell growth, the resulting productivity and the 

achievement of desirable glycosylation levels.
20

 

Ivarsson et al. investigated the effect of single 

and combined chemical and mechanical stress 

parameters on the glycan micro-heterogeneity 

of an IgG1 antibody
21

. Within a pH range of 6.8 

to 7.8 differences in galactosylation and 

sialylation of nearly 50 % were observed. 

Variation of dissolved oxygen tension between 

10 to 90% air saturation resulted into a 

maximum variability of 20 % in galactosylation 

and 30 % in sialylation. 

Amino acids as basic supplements of 

mammalian cell culture feeds have also effects 

on the glycosylation pattern.
22

 The nutrient 

levels and the concentrations of byproducts 

such as ammonia and the adaption to 

glutamine-free growth have been identified as 

very significant influence factors as well.
23,

 
24

 

Among further examples for the influence on 

glycosylation patterns are osmolality levels and 

extending culture duration
25

, the modulation of 

antibody galactosylation through feeding of 

uridine, manganese chloride, and galactose
26

, or 

addition of glucocorticoids in a dose- and time-

dependent manner.
27

 

4. Glycosylated Antibodies and Effector 

Functions 

Different glycosylation patterns must not 

invariably result into changes of features.
28

 
However, in general, carbohydrates attached to 

therapeutic glycoproteins directly affect product 

quality, safety, and efficacy and it is well 

known that serious adverse events can be 

caused by some carbohydrates.
29

 

A typical example for severe influences of 

glycosylation pattern on effector functions on 

proteins are mAbs.
30, 31

 The majority of 

oligosaccharides of human and recombinant 

IgGs include core-fucose. In most cases, the 

levels of terminal galactose and bisecting 

residue are higher in human IgG compared with 

recombinant IgG molecules and a-glycosylated 

antibodies and high mannose are usually 

present at much higher levels in recombinant 

mAbs compared with human IgG.
30

 

Importantly, carbohydrates like terminal 

galactose residues, bisecting GlcNAc and core 

fucose have a critical impact on mAb mediated 

effector functions like antibody-dependent 

cellular cytotoxicity (ADCC).
32

 Core fucose 

reduces IgG antibody binding to IgG Fcγ 

receptor IIIa resulting in decreased ADCC 

activities,
30

 while the presence of a terminal 

galactose or bisecting residue only has a subtle 

effect on receptor binding and ADCC.
33, 30

 

Mannosylated glycans and sialic acid 

N-acetylneuraminic acid (NANA) can impact 

PK, and lower levels of galactose reduce 

complement-dependent cytotoxicity (CDC) 

activity.
30

 Furthermore, modifications that are 

not common to endogenous IgG molecules 

pose a higher risk of immunogenicity.
15, 30

 

Regarding the clinical efficacy of therapeutic 

mAbs, those fully lacking core fucosylation 

have attracted attention as next-generation 

approaches (second line products) because of 

their improved ADCC activity.
34, 35

 The first 

glyco-engineered antibody with enhanced 

ADCC to reach the market (in Japan), 

mogamulizumab / Poteligeo®, was regarded as 

a landmark.
36
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Glycosylation constitutes a critical quality 

attribute for therapeutic proteins and for 

optimal efficacy and safety a framework for 

designing the quality target product profile is 

required.
4 

Moreover, glycan patterns of 
individual mAbs must be adequately analyzed 

at every process step throughout the product 

life cycle including batch-to-batch consistency. 

Drastic effects on biological functions and in-

vivo recovery are not only restricted to mAbs, 

but can also be observed on many other 

therapeutic glycoproteins, just naming 

recombinant coagulation factor IX.
37

 If 

biosimilars are developed, structural and 

activity related comparability to the innovator 

must be demonstrated as well.
8, 38

 

5. Glycoengineering and Quality by Design 

Quality by design (QbD) is a process to ensure 

product quality by integrating it into the 

manufacturing process of biopharmaceutical 

products.
39, 40

 Accordingly, glyco-engineering 

of expression platforms is an important strategy 

to improve biopharmaceuticals.
41 

A classical 

approach for QbD is to analyze cell culture 

medium components and supplements affecting 

the quality attributes.
42

 Modulation of 

sialylation patterns through overexpression of 

sialyltransferases might be just an example to 

produce desired glycoforms.
43

 To avoid time-

consuming experimentation for clone 

identification and optimization of biosimilars, 

various computational methods to predict an 

optimal glycosylation profile can be applied.
44, 

45,46
 

6. Regulatory Guidance for 

Biopharmaceuticals and Biosimilars 

In respect of glycosylation profiles, the 

International Conference on Harmonization of 

Technical Requirements for Registration of 

Pharmaceuticals for Human Use (ICH) issued 

two guidelines detailing the specifications of 

biopharmaceuticals
47

 as well as comparability 

of such structure profiles during process scale-

up and changes in manufacturing process.
49

 

According to these guidelines, glycosylation is 

a key critical quality attribute and subsequently 

should be controlled and monitored throughout 
the development and production processes of 

therapeutic proteins.  

According to the European Medicines Agency 

(EMA), a biosimilar is a copy version of an 

already approved biopharmaceutical drug with 

(very) similar biologic activity, 

physicochemical characteristics, efficacy, and 

safety. To ensure similar efficacy and safety 

comparability should be analyzed at quality, 

preclinical and clinical level.
50

 Basic regulatory 

guidance is laid down by the EMA in several 

issues
51, 52, 53, 54

 For assessment of biosimilarity, 

FDA recommends a stepwise approach for 

demonstrating biosimilarity between a 

proposed biosimilar product and a biological 

originator (innovator) product.
55, 7, 56

 The 

defined regulatory requirements for biosimilars 

in various countries across the world were 

reviewed by Chugh et al.
57

 

7. The Rituximab Story 

An example makes it clear that a biosimilar 

should never be developed without knowing the 

status of the glycosylation pattern in 

comparison to the originator molecule. 

Rituximab (Rituxan™, MabThera™) is a 

chimeric IgG mAb directed against CD20 

surface protein. One biosimilar in development 

showed higher receptor affinity and higher 

ADCC activity, therefore EMA has advised the 

applicant to adjust the manufacturing process. 

After thorough analysis, the primary amino acid 

sequence of the biosimilar was shown to be 

identical, and secondary and tertiary structures 

of the proteins were indistinguishable. 

However, proportions of some glycosylations 

were slightly different. The development was 

restarted and a modified manufacturing process 

finally directed the oligosaccharide 

composition within the variability of the 

originator. 
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For development of the rituximab biosimilar 

GP2013 post-translational modifications and 

bioactivities of GP2013 versus the originator 

rituximab were engineered and monitored to 

ensure similar pharmacological profiles.
58

 In 
another study comparing rituximab and 

biosimilars, N-glycosylation profiles obtained 

from three batches of the biosimilar and the 

reference product showed quantitative 

variations, although N-glycans were 

qualitatively similar.
59

 

8. The Infliximab Story 

Remsima™ (infliximab), a tumor necrose 

factor α blocker, is the first biosimilar mAb 

approved by EMA and FDA. The originator 

product is Remicade®. Remsima™ has higher 

levels of soluble aggregates, C-terminal lysine 

truncation, and fucosylated glycans. 

Glycosylation patterns were extensively 

studied. With forced degradation studies it was 

shown that infliximab's primary sequence 

largely defines the protein instabilities and 

glycosylation differences had limited 

influence.
60

 In another infliximab study the 

biosimilar Remsima™ and the originator 

Remicade® were compared and in general, the 

amount of glycans was consistent in both, with 

no new glycans detected.
61

 Remicade®, and 

biosimilar products Flixabi®, Renflexis® and 

Remsima®, and Inflectra® were also compared 

and correlated with effector functions.
62

 

9. The Cetuximab Story 

Cetuximab is produced in SP2.0 murine 

myeloma cells and is N-glycosylated in the Fc 

and Fab domains of the antibody. 21 distinct 

oligosaccharide structures were observed
63

 and 

a comprehensive profile of the glycoforms of 

the EMA-approved cetuximab is available.
64

 

The analysis of the glycosylation pattern of 

cetuximab makes especially sense, because a 

high prevalence of hypersensitivity reactions 

associated with glycan structures were reported 

and some of the glycoforms were demonstrated 

to be responsible for these reactions as well as 

anaphylaxis.
65

 The glycan profiling of a 

potential biosimilar candidate of cetuximab 

revealed that the major glycan moieties in the 

biosimilar were in agreement with the 
innovator.

66
 

10. Glycosylation Analysis of other 

Therapeutic Proteins 

Not in every case a distinct gycosylation pattern 

results into significant differences. A biosimilar 

of trastuzumab and its reference product 

exhibited a high degree of similarity for a 

number of evaluated features including 

glycosylation profiles.
67

 HS628, a biosimilar of 

originator tocilizumab (Actemra®) had a 

similar glycosylation patterns as the originator 

tocilizumab and no modified effector functions 

were observed.
68

 For adalimumab / Humira® 

product quality data from more than a decade of 

manufacturing across multiple production sites 

and through a series of manufacturing scale 

changes were compiled.
69

 In this case, the 

glycosylation patterns have remained 

remarkably consistent. N-glycosylation 

consistency was observed in several production 

batches of nimotuzumab (a humanized anti-

EGF-R antibody) that lasted between 68 and 

150 days.
70

 Also biosimilars of trastuzumab 

were analyzed in detail.
71, 72

 Comprehensive 

glycosylation profiling confirmed that 

proportion of individual glycans was different 

between biosimilar and the innovator, although 

the number and identity of glycans were the 

same.
71

 

However, issues with glycosylation patterns of 

other therapeutic antibodies, which have 

occurred in the past have already drawn 

attention towards a thorough analysis of glycan 

structures and potential clinical implications. 

Recombinant human follicle-stimulating 

hormone (r-hFSH) is widely used in fertility 

treatment of women. The biosimilars Bemfola® 

and Ovaleap® showed differences in pregnancy 

rates and ovarial hyperstimulation syndroms in 

comparison to FSH originator product 
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follitropin alpha / Gonal-f™. Accordingly, it 

was not recommended by some physicians to 

interchange or substitute innovator and 

biosimilars in clinical practice.
73

 This could 

have been avoided, because previously Gonal-
f™ has been already compared to a potential 

biosimilar candidate and it was demonstrated 

that two r-hFSH preparations have a different 

glycosylation pattern. N-terminal glycosylation 

site of the β-chain of the biosimilar contained a 

higher percentage of tri- and tetra-antennary 

glycans and of N-acetyllactosamine repeats as 

compared to Gonal-f™.
74

 

The site-specific glycosylation profile and 

batch-to-batch variability of in-vivo bioactivity 

of Bemfola® with its reference product 

GONAL-f™ was also analyzed by Mastrangeli 

et al.
75

 A lower proportion of bi-antennary 

structures, and a higher proportion of tri-

antennary and tetra-antennary structures was 

observed at Asn52. This, together with the 

higher bioactivity and higher batch-to-batch 

variability of Bemfola®, could partly explain 

differences in clinical outcomes. 

Glycosylation of recombinant human 

erythropoietins (rhEPOs) is significantly 

associated with drug's quality, structure and 

potency. Glycoform profilings of biosimilar 

and innovator EPO products showed 

characteristic glycoform profiles with respect to 

sialylation, glycan size, O-acetylation of sialic 

acids and O-glycosylation.
76, 77

 An in-depth 

characterization of glycosylation of a candidate 

biosimilar of CTLA4-Ig, a highly glycosylated 

therapeutic fusion protein containing multiple 

N- and O-glycosylation sites, was also strongly 

recommended.
78

 

A comprehensive glycosylation study was 

conducted with several antibodies in parallel, 

i.e. batch-to-batch consistency of the N-

glycosylation of infliximab, trastuzumab and 

bevacizumab was analyzed.
79

 All batches of the 

therapeutic glycoproteins varied considerably, 

especially in galactosylation. The authors 

therefore suggested to establish threshold 

values for batch-to-batch N-glycosylation 

variations in order to regularly test batch-to-

batch glycosylation consistency. In these cases, 

however, significantly different 

N-glycosylation profiles did not result into 

significant variations in biological activity. 

In summary, though not always differences in 

glycosylation structures invariably end into 
different measurable biological or therapeutic 

features, recent studies tend to the 

recommendation not to develop a biosimilar 

without a thorough comparison to glycosylation 

patterns of the originator molecule. In view of 

such issues and reffering to the increasing 

demands on knowledge of glycan structures, it 

is not surprising that during the last few years 

the analysis of glycovariants of biosimilars in 

comparison to their originators got considerable 

interest and in addition to well-established 

methods, a number of improved or new 

technologies were developed for the analysis of 

glycosylation structures of proteins. 

 

11. Methods for Glycan Analysis 

No universal method for a rapid and reliable 

identification of glycan structures is currently 

available and therefore the specific 

glycoprotein to be analyzed must dictate the 

best method or combination of methods, 

especially whether N- and / or O-glycan 

analysis will be performed.
80, 4, 8

 Basic 

analytical techniques used for glycoprotein 

analysis include HPLC, CE, MS, and high-

throughput analytical methods based on 

microfluidics.
80

 Chemical and enzymatic 

releasing methods of glycans from 

glycoproteins and chemical reactions for the 

derivatization of glycans, and chemical labeling 

methods are also needed as supporting tools.
82

 

IEF, IEX, or CE alone or in combination is 

commonly applied for heterogeneity in sialic 

acids on intact glycoproteins, HPLC for 

quantitation of amounts of released 

oligosaccharides, and MS coupled with HPLC 

for characterization of glycosylation site(s) 

occupancy and carbohydrate structures.
8
 

Further developments of well-established 

methods are presented from time to time. For 
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example two ultrafast methods for antibody 

glycan analysis that involve the rapid 

generation and purification of glycopeptides in 

either organic solvent or aqueous buffer 

followed by label-free quantification using 
matrix-assisted laser desorption / ionization-

time of flight mass spectrometry.
83

 Both 

methods yield to N-glycan profiles of test 

antibodies similar to those obtained by 

traditional methods in shorter assay time and in 

a high throughput format in 96-well PCR 

plates. Obviously, there is a need for further 

simple, high-speed, and low cost methods that 

may enhance research, process development, 

batch-to-batch analysis, and comparison for 

novel mAbs and biosimilar products. 

 

12. Lectin Microarray Development 

In addition to ―classical‖ HPLC and MS 

methods
84, 85, 86

, a new promising technology 

for the analysis of glycosylation pattern is the 

lectin microarray (Figure 1). 

 

 

Figure 1: The figure gives a simplified overview for the measurement of glycoproteins. Glycosylated proteins 

can be either treated or digested to release the glycans or their peptides respectively, or can be analyzed on the 

intact glycoprotein. Dependent on the necessitiy of quanitfication different analytical methods can be applied. 

For the comparison of glycopatterns the lectin microarray provides an orthogonal way to analyse the intact 

protein. 
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Monosaccharide 
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with HPAE-PAD 

Charged Monos. 
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with HPAE-PAD 

Glycan Analysis 

Glycan Analyis  

with HPAE-PAD 

Glycan Analyis 

with HPLC-FD  

Glycan Analysis and 
Quantification  

with MS 

Glycopeptides 

Glycosylation Site 
Profiling 

Glycosylation Site 
Profiling  
with MS 

Intact Glycoprotein 

Intact Glycoprotein 
Profiling 

Intact Glycoprotein 

with MS 

Intact Glycoprotein 
 with Lectin Microarray 
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Lectin microarrays were first reported in 

2005
87, 88

 and are prepared by immobilizing 

various lectins on a solid surface. These sugar-

binding proteins are generally classified into 

five groups, according to the monosaccharide 
for which they exhibit the highest affinity: 

mannose, galactose / N-acetylgalactosamine, 

N-acetylglucosamine, fucose, and sialic acid.
87

 

The microarray procedure is based on an 

evanescent-field fluorescence-detection 

principle, which allows sensitive, real-time 

observation of multiple lectin-carbohydrate 

interactions under equilibrium conditions.
87, 89

 

The method allows quantitative detection of 

even weak lectin-carbohydrate interactions with 

a dissociation constant of Kd > 10
-6

 M. Analytes 
including glycoproteins, whole cells, or bacteria 

are labelled with a fluorescent dye or antibody 

before loading onto a commercially available 

lectin microarray containing up to 45 lectins ( 

Figure 2). 

 

 

 
 

Figure 2: Layout of a lectin chip (LecChip
TM

 by Glycotechnica Ltd; the figure is a courtesy of Masao Yamada 

PhD, Glycotechnica Ltd.). 

(A) The chip has 4 position marker on the left and 45 different lectins clustered in groups for specific 

carbohydrate binding. Each of the lectins is printed in triplicate. (B) Each chip has 7 wells, which allows either a 

concentration dependent measurement or technical replicates. (C) After incubation with fluorescent dye Cy3 the 

chip is analyzed in the scanner (GlycoStation Reader). For analysis intensity of the dots, the scanned picture is 

transformed into numbers which allows to generate the glycosylation pattern of the analyte. 

 

 

Depending on the carbohydrate structures 

attached to the analyte, binding of different 

protein structures to certain, specific lectin 

species will occur. There is no washing step 

required, and the chip is analyzed by a confocal 

type fluorescence scanner. Other lectin 

microarrays formats for the high-throughput 

analysis of glycosylation are reported as well.
90
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Fabrication and detection strategies of lectin 

arrays and their applications were reviewed by 

Hu et al.
91

, Huang et al.
92

, and Hirabayashi et 

al.
93

 Several options of microarray platforms 

including glycoprotein arrays, glycan arrays, 
lectin arrays, and antibody combined lectin 

arrays are described.
94

 For improvement of 

sensitivity, lectins were chemically coupled to 

fluorescent dye coated microbeads and the 

detection was carried out three dimensionally.
95

 

With this method, a limit of detection of 1 pM 

was reached for lectin Ricinus communis 

agglutinin 120. A lectin-based enzyme-linked 

immunosorbent assay (ELISA) to quantify 

terminal glycan moieties was also described.
96

 

A new integrated and automated microfluidic 

lectin barcode platform may improve and speed 

up the performance of lectin arrays.
97

 

Lectin microarrays especially hold a promise of 

enabling glycomic profiling of cancers in a fast 

and efficient manner and already gained 

considerable interest in various cancer types.
98

 

However, this seems to be not the end of 

possibilities for supporting diagnostic 

decisions. Recently an analysis of glycosylation 

patterns in Alzheimer's disease-affected brain 

regions as well as in Alzheimer's disease patient 

serum was presented.
99

 Differences of glycan 

levels in protein O-GlcNAcylation and N- / O-

glycosylation between patients and healthy 

individuals and brain region-specific 

glycosylation-related pathology in patients 

were observed. 

Glycoproteins are potentially important 

biomarkers of many diseases and also 

therapeutic targets. Additional applications for 

lectin arrays can be explored for example on the 

glycosylation profile of tear fluid.
100, 101

 

Another interesting field can be the 

glycoprofile of human milk oligosaccharides as 

an orthogonal method to CaR-ESI-MS.
102, 103

 

Also during spermiogenesis post-translational 

modifications and glycosylation play an 

important role in the reproduction system.
104, 

105, 106 

 

 

 

13. Lectin Array vs other Glycan Profiling 

Methods 

Results of commercially available lectin arrays 

are semi-quantitative and for accurate and 
specific carbohydrate identification standard 

methods like HPLC, MS and CE should still be 

considered in addition.
107

 The potential utility 

of lectin-based microarrays for high throughput 

glycan profiling was compared with pros and 

cons of major types of established analytics for 

use in determining glycan features.
8
 One of the 

major advantages of lectin microarrays 

appeared to be direct measurements in an intact 

protein without the need of clipping glycans 

from the protein backbone. Thus, this 

methodology was suggested to be applied as a 

complementary tool for characterization of 

protein glycosylation. The major advantages of 

microarrays are analytical sensitivity and 

relatively high sample through-put, and only a 

very small amount of sample is needed for 

analysis.
93

 

14. Lectin Arrays for Glycosylation Analysis 

of Therapeutic Proteins 

In general, lectin array technology has been 

already applied to study implication of 

glycosylation in cancer, bacteria, fungi, stem 

cells, sperm, and diabetes.
93

 However, though 

the advantages of lectin array analysis are 

obvious, it was up-to-date hardly used for 

glycosylation analysis of therapeutic proteins.
8
 

Only a few studies with successful applications 

of lectin arrays were published. The 

glycosylation pattern of a recombinant CTLY4-

IgG fusion glycoprotein expressed in CHO 

cells was determined with a lectin array and 

compared to traditional negative mode capillary 

LC-MS of released oligosaccharides.
108

 The 

glycosylation pattern including information 

about sialylation, the presence of reducing 

terminal gal β1-, terminal N-acetylglucosamine 

β1-, and antennary distribution was comparably 

with both methods applied. 
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A lectin array-type method specifically 

designed for the study of recombinant 

therapeutic interleukin-7 was employed for a 

lot-to-lot comparison of different batches of the 

protein produced in CHO cells.
109

 The method 

allowed analysis of glycans motifs, distribution 

of glycoforms, and detection of potential 

immunogenic glycans.  

The authors concluded that lectin array 

technology is of considerable interest for the 

development of therapeutic recombinant 

glycoproteins and particularly relevant for a 

first informative study of unwanted glycans 

during process development. 

Porcine and human fibrinogen glycoproteins 

were analyzed with a specifically developed 

nine-lectin screen.
110

 The observed spectra of 

lectin-protein specific binding rates allowed to 

distinguish between glycosylation of the 

porcine and human fibrinogens. 

The N-linked glycosylation of four lots of a 

human therapeutic mAb was assessed by three 

orthogonal chromatographic methods and 

compared to a lectin microarray.
111

 Despite the 

orthogonality of the methods, a high degree of 

consistency in the types and amounts of N-

linked glycans and between all four analysis 

methods was observed. Moreover, the 

glycosylation analyses provided also 

complementary and corroboratory qualitative 

and quantitative information. 

Until now the most comprehensive study 

around the utility of lectin arrays for the 

assessment of therapeutic glycoproteins was 

conducted by a research group within the US-

FDA.
38

 Using a commercially available lectin 

chip containing 45 lectins the binding patterns 

of a broad variety of 15 therapeutic proteins, 

including 8 mAbs was assessed. The antibodies 

were bevacizumab / Avastin®, trastuzumab / 

Herceptin®, adalimumab / Humira®, 

infliximab / Remicade®, rituximab / Rituxan®, 

omalizumab / Xolair®, cetuximab / Erbitux® 

and the fusion protein etanercept / Enbrel®, the 

other proteins were from the groups of 

recombinant therapeutic cytokines and 
enzymes, and of human transferrin proteins. In 

summary, lectin binding signals were generally 

consistent with the previously known glycan 

patterns for the respective glycoproteins. The 

lectin microarray was especially sensitive to 

variations in terminal carbohydrate structures 

such as galactose versus sialic acid epitopes. 

This study clearly showed that lectin 

microarrays are useful tools for screening 

glycan patterns of therapeutic glycoproteins. 

In addition to screen glycan structures of 

therapeutic proteins, lectin arrays can be, for 

example, a perfect tool to predict certain 

effector functions and activity or potency of 

therapeutic proteins. In a recent study, lectin 

microarray technology was applied to compare 

the glycosylation pattern of a mAb expressed in 

SP2.0 cells to an ADCC-optimized de-

fucosylated variant expressed by a plant 

expression system (MB314).
112

 A fucose 

indicative lectin-binding pattern correlated with 

increased MB314 binding to CD16 whose 

affinity is mediated through core fucosylation 

and stronger ADCC. The expected positive 

correlation of increased ADCC to the de-

fucosylated variant demonstrated that lectin 

binding data can be used as a surrogate 

parameter to predict biological functions. 

15. Conclusion 

According to recent literature, the lectin 

microarray is a rapid tool for profiling 

carbohydrate structures of therapeutic 

glycoproteins especially for mAbs. The 

analytical sensitivity and sample throughput of 

lectin microarrays is relatively high and only a 

small amount of sample is needed for analysis. 

The curently available data – mostly for 

therapeutic glycoproteins (antibodies) clearly 

show that lectin binding signals are generally 

consistent with the previously known glycan 

patterns. The lectin array technique has 

advantages in monitoring the glycosylation 

pattern during process development for 

recombinant proteins, which depend on various 

parameters such as medium feeds, metal ions, 

and harvest time. Results are semi-quantitative, 
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and, for accurate and specific carbohydrate 

identification, standard methods such as HPLC, 

MS, and CE will be still applied in parallel in 

order to get full scope of information. 

The question of this review whether lectin array 

technology maybe a useful tool for screening 

the glycosylation pattern of biotechnologically 

produced proteins can be answered with a 

strong ‖yes‖. This technology is also versatile 

and more, new applications will be utilized in 

the near future. 
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