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Diverse numerical studies of the 1D Coulomb problem have suggested the existence of

an infinite binding-energy ground-state and definite parity eigenstates in this system. We

exhibit that such conclusions about the 1D Coulomb problem are wrong. The origin of

the mistakes are to be found not in the numerical techniques employed but in the careless

extrapolation of their results. Any numerical technique used for solving the 1D Coulomb

problem must be supplemented by a detailed analysis of the effect of the impenetrable barrier

produced by the −|x|−1 singularity in order to obtain valid conclusions.
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I. INTRODUCTION.

The 1D Coulomb problem, also known as the 1D hydrogen atom, described by the Schödinger

equation (in atomic units ~ = m = e = 1)

HCψ(x) = −1

2

d2ψ(x)

dx2
− Z

|x|
ψ(x) = Eψ(x), Z the atomic number, (1)

where HC is the Coulomb Hamiltonian operator with potential energy VC = −Z/|x|, ψ(x) stands

for the system’s eigenfuctions, and E for its energy eigenvalues, has produced an extensive literature

which includes its uses in many fields of physics [1–39, 41, 42]. We should mention that some of the

previous theoretical studies of the system (e.g. [5, 20, 30, 36, 44]) made erroneus claims that have

been disproved based on rigorous physical and mathematical analyses [7, 14, 32, 42, 43, 45, 46].

Let us first remark that the Hamiltonian HC is not self-adjoint an important fact which we discuss

later on [7, 23]. As examples of its uses, the Hamiltonian (1) has been used for calculating the

optical absorption spectra for direct interband transitions in a 1D electron-hole system within the

effective-mass approximation were special care was taken to avoid the assumed —but inexistent,

as we show here— divergence in the spectrum of the 1D hydrogen atom [17]. Moreover, very

recently it was employed as a model in the effective-mass approximation, to study electron states

in a nanotube placed in the electric field of a charged ring, such field may create a potential-

well describable by a 1D Coulomb-like potential [38]. A related phenomena, also approximately

described by HC (1), has been observed in the spontaneous formation of quasi one-dimensional

hydrogen gas hydrates within single-wall nanotubes [39], [40].

Several numerical approaches have tried to provide insight on the physical proterties of the 1D

Coulomb problem. In order to deal with the singularity of the potential in (1) different approxi-

mations have been used to make the problem numerically solvable. Such approximations go from

introducing a parameter to ameliorate the singularity, for example, the following two,

V 1
α = − Z

|x|+ α
, α > 0, and V 2

α = − Z√
x2 + α2

, α 6= 0; (2)

at the end they need α to vanish in order to recover the singular Hamiltonian (1) and be able

to obtain conclusions, but these cannot be obtained from any numerical calculation. We can just

obtain hints on some features on the systems behavior that should be checked in non-numerical
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fashion. Another used approach is simulating the interaction of the regularized 1D hydrogen atom

with an harmonic electromagnetic field —e.g. a laser pulse— to observe features of the numerical

solutions which may help understand the behavior of the singular system (1) [34–37].

A common conclusion of such studies is the degeneracy of the energy eigenvalues of the 1D

hydrogen atom and, in some cases, the existence of an infinite binding-energy non-degenerate

ground-state, described by a Dirac-δ wave function — though this kind of state is sometimes

regarded as an improper or unphysical solution [36, 37]. Such conclusions may occur because those

analyses were not really based on solid physical or mathematical grounds but only on numerical

interpretations. Some of the previous results may have suggested that the wave function should

vanish at the origin—this would make HC self-adjoint. This is known as the Dirichlet condition,

which is not the only boundary condition making HC self-adjoint [23, 41], the use of this condition

does indeed provoke the breakdown of parity in the system [32, 42].

Such considerations exhibit that generalizing from purely numerical results to general properties

of singular quantum systems is prone to fail if the appropiate considerations (such as a careful

assesment of the conditions needed in order to invoke adequate convergence results for the sequences

of operators used in the studies) are not taken into account [33, 47]. Any numerical procedure needs

to be supplemented by detailed physical and mathematical analyses of the singular problem for the

conclusions drawn from them to be meaningful. The paper is organized as follows: In section II we

show that the ground state of infinite binding energy for the 1D Coulomb problem does not exist.

In section III we show that no eigenstates can be defined in the whole real line, such feature can

be understood as the manifestation of a superselection rule acting in the problem [10, 13, 32, 42].

In section IV we discuss the conclusions obtained from the numerical results of [34–37]. In section

V we sum up our conclusions. Appendix A explains the notion of spectral pollution, a concept that

is used in section II.

II. NON-EXISTENCE OF THE INFINITE ENERGY GROUND STATE.

Back in 1980, Gesztezy established that the energy of the ground state of the 1D Coulomb

problem is Egs = −1/2 [7], a result that has been corroborated in more recent analyses [11, 32, 46].

Some numerical analyses used an approximation to the singular 1D Coulomb potential VC by

means of regularized potentials, V i
α in (2), parametrized by the real number α, or use cut-off

approximations to investigate the E0 energy eigentstate of (1). Their results apparently corroborate

that such eigenvalue is indeed unbounded by below when α → 0 [3, 34, 36, 37]. But, as we said
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before, we can ascertain that there is not an infinite binding-energy eigenstate in this system.

Thus, some of the numerical approaches seems to be flawed, and this is so because it is known

that numerical evidence gathered from regularizing perturbations of a singular Hamiltonian are

inconclusive when used to investigate the nature of its spectrum.

The heart of the problem lies in a mathematical intricacy: the spectra of a series of operators

Hn that converge to a singular operator H are not related in any natural way to the spectrum

of H, unless very restrictive conditions are satisfied [47]. As an example of such an anomaly we

can mention the phenomenon known as spectral pollution, in which a sequence of eigenvalues of

Hn converges to a value that is not in the spectrum of H [48]. Related to this issue is the fact

that there exist several different notions of convergence of operators, but only the strongest types

of convergence ensure that spectral pollution will not occur [49]. As an example that illustrates

the implications related to different types of convergence, we discuss in some detail the work of

Gesztezy [7]. In order to calculate the spectrum of the singular 1D Columb Hamiltonian (1),

Gesztezy used the Friedrichs extension [55] HD of the kinetic operator p2/2 in (1) to construct the

family of operators

Sα = HD + V i
α, (3)

and showed that HC is the limit, in the sense of strong norm convergence, [56] of the family Sα

as α → 0. Gestezy further showed that Sα ≥ −1/2 for all α > 0 considering V 1
α (1) and, as

a consequence, the spectrum of HC is bounded from below by −1/2 regardless of the approach

to VC (V 2
α with α 6= 0, the cut-off approximation, or others). As an immediate consequence the

inexistence of a ground state with unbounded negative energy is established. Let us note that the

sequence of operators

Tα = −p
2

2
+ V i

α, (4)

thus not considering the Friedrichs extension, also converges to HC as α→ 0, but only in the strong

graph limit sense, [57] and therefore no useful information about the spectrum can be inferred

(see Appendix A). In this case, the spectra of Tα are unbounded from below, a fact that misled

several authors to believe that the energy of the fundamental state of HC was also unbounded (i.e.

Egs = −∞) [3, 6, 34–37].

We should also notice that admitting the ground state eigenfunction as a Dirac-δ function is

completely untenable since the corresponding probability density, which would be the square of a

distribution, would generate all kind of interpretation problems on its own. Besides, let us assume
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the Dirac-δ as an eigenfunction for the 1D hydrogen atom, by taking its Fourier transform we can

see that its equivalent eigenfunction in the momentum representation would be

Φ0(p) =
1√
2π~

. (5)

But the eigenfunction with quantum number n = 0 in momentum representation is known to be

Φ0(p) = 0, which contradicts our initial assumption [32]. Our above discussion shows that the

observed numerical fact that the base-state energy is consistently getting larger in absolute value

as α (14), or as the cut-off approach shrinks, is of no consequence for establishing conclusions about

the value of the ground energy of the 1D Coulomb problem [10].

III. ON THE NON-EXISTENCE OF PARITY EIGENFUNCTIONS.

Another source of controversy related to the spectrum of the 1D hydrogen atom is wether the

wave functions of the system possess a certain kind of definite parity. Numerical studies have tried

to address this property of the system by means of both the regularized potentials and the atom-

laser interaction [34–37]. In a system with a regularized Coulomb potential states with definite

parity do exist, however the singularity of the potential VC induce an spontaneous breaking of parity

—which was not taken into account in the limit of the numerical approximations. The strongest

effects of such symmetry breakdown may be interpreted as the existence of a superselection rule

operating on the system [13, 42].

Such issue may be set straight by proving that the 1D Coulomb problem does not admit eigen-

functions defined over the whole x-axis. Although not explicitly stated, all the aforementioned so-

lutions for the 1D Coulomb problem assume that the wavefunctions vanish at the origin, ψ(0) = 0.

This Dirichlet boundary condition guarantees that the Hamiltonian HC is self-adjoint [23, 31, 33].

In [32] we found that the eigenfunctions, ψ±n (x), and corresponding energy eigenvalues, En, of

the 1D Coulomb problem are

ψ±n (x) = Θ(±x)2n−3/2(−1)n−1xL1
n−1(2x/n) exp(−z/n),

En = − 1

2n2
, n = 1, 2, 3, . . . , (6)

where Θ(x) is the unit step function and L1
n−1 are the generalized Laguerre polynomials [32, 50].

Notice that, as proved above, the n = 0 value is not allowed. Nevertheless, it would be easy to

use the above eigenfunctions to build apparently valid normalized doubly-degenerate even and odd
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states as follows

ψeven =
1√
2

(ψ+ + ψ−), ψodd =
1√
2

(ψ+ − ψ−), (7)

which are defined for −∞ < x <∞. However, the definition of ψeven and ψodd is not valid because

the functions ψ+ and ψ− cannot be joined to produce eigenfunctions valid for all real x. For, when

a potential V (x) is singular at x = 0 but not a Dirac-δ potential —as happens for the 1D Coulomb

problem— we can obtain upon integrating the Schrödinger equation

lim
ε→0

∫ 0+ε

0−ε
V (x)ψeven(x)dx =

1

2

(
ψ(0+)− ψ(0−)

)
= 0; (8)

whereas, by using (6) directly we obtain

ψevenn (0+)− ψevenn (0−) = (−1)n−1
√

8/n (9)

as in [42]. Therefore, the even states cannot be part of the spectrum of the system, which means

that no even-parity eigenfunctions exist [11, 32]. On the other hand, if we accept the existence of

odd eigenfunctions, ψodd, the matrix elements of both the position, q̂ = x, and the momentum,

p̂ = −id/dx, operators between any two eigenfunctions of the system, would necessarily vanish

< ψ1|q̂|ψ2 >=

∫ ∞
−∞

xψ∗1ψ2dx = 0 and < ψ1|p̂|ψ2 >= −i
∫ ∞
−∞

ψ∗1
dψ2

dx
dx = 0. (10)

We thus get the contradictory result that any operator which may be expressed in terms of q̂

and p̂ should vanish. Our conclusion is then that no eigenfunction can be defined on the whole

configuration space (−∞,∞). The eigenstates then necessarily describe states confined wholly to

the left or wholly to the rigth of the singularity and so the origin, x = 0, is completely forbidden

for the quantum particle [22] as it is clearly exhibited by the vanishing of the quantum flux

j = i

(
ψ∗
∂ψ

∂x
− ψ

∂ψ∗

∂x

)∣∣∣∣
x=0

= 0. (11)

Even at positive energies there cannot be particle flow from the right to the left of the singularity

or vice versa, in complete agreement with the matching condition ψ(0) = 0. It is known that in

each of the regions x > 0 and x < 0, equation (1) has two linearly independent solutions, one

of these, and also the only one with physical meaning for this problem, is the so-called regular

Whittaker function

Mκµ(x) = exp(−x/2)xµ+1/2M(µ− κ+ 1/2, 1 + 2µ;x), (12)

which is analytic in the vicinity of x = 0; and the other is not. one

Wκµ(x) = exp(−x/2)xµ+1/2U(µ− κ+ 1/2, 1 + 2µ;x), (13)
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with a logarihtmic singularity such that its derivative at x = 0 is infinite, and where the symbols

M(a, b; c) and U(a, b; c) stand for Kummer functions [51]. The fact that only one solution is

acceptable on each half-line implies that at positive energies there can be no transmission to the

other side, because the only acceptable solution that contains no incoming wave, as required for

transmission, is the trivial one. Thus, in the 1D Coulomb problem the boundary condition ψ(0) = 0

acts as an impenetrable potential barrier [4, 22, 23, 32, 42].

IV. PHYSICAL ANALYSIS OF NUMERICAL RESULTS.

We have explained why the numerical evidence offered by [34–37] and others do not imply

the existence of wave functions with any kind of definite parity nor the existence of an infinite

binding-enegy ground state with Dirac-δ eigenfunction. We emphasize that no numerical approach

is enough to settle controversies on non-perturbative properties of quantum systems. Despite

the symmetry of the system, the superselection rule provoke a breaking of parity. The physical

consequences of the ensuing superselection rule [12, 32, 33, 42] cannot be explicitly appreciated in

numerical results. Every numerical approach should take into account that if an arbitrary sequence

of Hamiltonians Hn do indeed converge to a Hamiltonian H, there is in general no guarantee that

their spectra will be related in any simple way. In particular, it is not usually true that the ground

energies of the Hn will converge to the ground energy of H [7]. Further theoretical analysis of the

system is required to attain a complete understanding.

Any approach using numerical methods has to be applied paying attention to the assumptions

needed in order to apply suitable convergence results. Such assumptions may not be suggested

by the numerical results and, even if they do, its physical consequences may not be fully realized.

For instance, the numerically evaluated probability density may suggest the use of the Dirichlet

condition ψ(0) = 0 though not the full consequences of the symmetry breakdown that arises from

choosing such boundary condition. In fact, the results obtained from numerical approaches applied

to the regularized 1D Coulomb potential (2) do not provide information about the 1D Coulomb

problem whose properties have been carefully proved in [7, 22, 23, 32]. Any attempt to find the

ground state energy of the 1D Coulomb problem using numerically calculated ground state energies

of regularized Hamiltonians is futile unless supported by appropriate convergence results. The same

can be said on the evidence presented about the existence of parity eigenstates. The methods used

either to support or to disprove any claim regarding the spectrum of a singular system cannot be

purely numerical. In a way of speaking, such spectral features are non-perturbative properties of
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the 1D hydrogen atom.

V. CONCLUSIONS.

Concerning the 1D Coulomb problem, it should be regarded as firmly established and completely

proved that

A. There cannot be any relation between the right (x > 0) and the left (x < 0) sides of the

singularity and, as it was convincingly argued for the first time in [4], not even for positive

energies there can be any transmision from one side of the singularity to the other [11, 16]

since a superselection rules operates on the system [12, 32, 42].

B. The controversy about the parity of the eigenfunctions is actually settled due to the superse-

lection rule mentioned in [A] which, among other things, prevents the 1D Coulomb problem

eigenstates to have a well defined parity [10, 12, 16, 32, 42].

C. The ground state energy of the 1D Coulomb problem corresponds to Egs = −1/2. The

supposed infinite energy ground state does not exist [10, 11, 32].

However, it should be taken into account that the conclusions listed above were obtained under

the hypothesis of a Dirichlet boundary condition ψ(0) = 0 which was also employed, although

not explicitly, in [34, 36, 37]. Other boundary conditions, that should be chosen according to the

physics of the problem being analysed, could lead to different conclusions [23, 41].

The type of mistakes induced by numerical data that we have discussed in this paper may not

only arise in the study of singular quantum problems like the 1D hydrogen atom, but they may

also occur while examining other stiff problems. We should be well aware of such complications

and remember that a careful analysis bolstered in solid physical and mathematical grounds is

required in order to validate any numerical evidence. In summary, we cannot deduce the features

of the singular Coulomb Hamiltonian HC only from analysing numerical data extracted from the

solutions of the regularized Hamiltonians that approach HC through a sort of limiting process.

This limitation stems from the basic differences that usually exist between the spectral features of

regular and singular potentials. Such general conclusion is applicable to many other stiff systems.

We also consider that the numerical investigations has established that not only the odd states but

also the even ones have to be taken into account when studying the interaction of a regularized 1D

hydrogen atom with a radiation field but that this is not true for the singular Coulomb potential

with Hamiltonian HC [35, 37].
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Appendix A. Spectral pollution from a sequence of Hamiltonians

It can be shown that if an arbitrary sequence of operators Hn (n = 1, 2, 3, ...) does indeed

converge to an operator H, then the spectra of the Hn is usually not related, in any direct way,

to the spectrum of H. In particular, it may well be the case that a sequence of eigenvalues λn

of Hn converges to a λ which is not in the spectrum of the limit operator H. The ocurrence

of such spurious “eigenvalues” λ had been termed spectral pollution and it occurs in a variety of

contexts, than ranges from the theory of Schrödinger and Sturm-Liouville operators to elasticity

and hydrodynamics. For a good account on the topic, see [48, 52, 53] and the references therein.

In fact, it can be shown that if a sequence of self-adjoint operators Hn converges to H in the

sense of strong resolvent convergence (also known as the strong graph limit), then for every λ in

the spectrum of H there exist a sequence λn in the spectrum of Hn such that λn → λ [47], but not

the other way around, as the following example illustrates [49]: consider in the space of real square

integrable functions, L2(R), the sequence of operators

Hn(x) = −1

2

d2

dx2
+ Vn, n = 1, 2, 3, . . . (14)

where Vn(x) is given by

Vn(x) =


−1 if n ≤ x ≤ n+ 1,

0 otherwise;

(15)

thus the operator H = −1
2
d2

dx2
is the strong graph limit of the sequence (14). However, the spectrum

of H is purely continuous spanning the whole non-negative axis, 0 ≤ x <∞, whereas the spectrum

of each Hn includes also a simple eigenvalue, µ, with a value between −1 and 0. As the above

example suggest, we cannot conclude without further analysis that the ground energies of the

sequence of Hamiltonian operators will end converging to the ground state of H. On the other
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hand, if Hn converges to H strongly in norm then spectral pollution never takes place, that is,

every converging sequence of eigenvalues λn of Hn converges to an eigenvalue λ of H [47].
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[43] M. A. Carrillo-Bernal, H. N. Núñez-Yépez, A. L. Salas-Brito, and Didier A. Solis, Phys. Rev. E to

appear (2015).

[44] M. Moshinsky, N. Méndez, E. Murow, J. W. Hughes, Ann. Phys. N. Y. 155, 231 (1984).

[45] M. Mayle, B. Hezel, I. Lesanovsky, and P. Schmelcher, Phys. Rev. Lett. 99, 113004 (2007).

[46] D. Xianxi, J. Dai, and J. Dai, Phys. Rev. A 55, 2617 (1997).

[47] T. Kato, Perturbation theory for linear operators, (Springer-Verlag, Berlin, 1982).

[48] E. Davies and M. Plum, IMA J. Numer. Anal. 24, 417 (2004).

[49] J. Weidmann, Univ. Iagel. Acta Math. 34, 153 (1997).

[50] M. M. Nieto, Phys. Rev. A 61, 034901 (2000).

[51] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and

Mathematical Tables, (Dover, New York , 1965) p. 504.

[52] L. Boulton, IMA J. Numer. Anal. 27, 102 (2007).
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