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Abstract. Let t be a commutative Lie subalgebra of sln(C) of maximal
dimension. We consider in this paper three spaces of t-loops that each get
deformed in a different way. We require that the deformed generators of
each of them evolve w.r.t. the commuting flows they generate according
to a certain, different set of Lax equations. This leads to three integrable
hierarchies: the (sln(C), t)-hierarchy, its strict version and the combined
(sln(C), t)-hierarchy. For n = 2 and t the diagonal matrices, the (sl2(C), t)-
hierarchy is the AKNS-hierarchy. We treat their interrelations and show
that all three have a zero curvature form. Furthermore, we discuss their
linearization and we conclude by giving the construction of a large class of
solutions.

1. Introduction

In the past decades it has become clear that integrable hierarchies play a
major role at developments in quantum field theory and string theory. We
illustrate this with several examples.

Inspired by his work on two-dimensional gravity Witten made in the early
90’s several conjectures, [2], relating generating functions of intersection num-
bers of Morita-Mumford classes, matrix models and classical integrable systems
of Khadomtsev-Petviashvilii type. In the case of the Korteweg-de Vries hierar-
chy the first part of this conjecture, [1], was proved by Kontsevich in [3], and
the second by Kharchev, Marshakov, Mironov, Morozov and Zabrodin in [4].
A different approach to these conjectures was initiated by work of Givental,
who defined in [5] a group action on the space of Gromov-Witten potentials
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and proved it to be transitive on the space of semi-simple potentials. More-
over, Givental gave in [6] a link between Ar−1 singularities and the r-KdV
hierarchy, r > 2, and showed that his construction is compatible with Wit-
ten’s conjecture on the relation between the intersection theory on the space
of r-spin structures on stable curves and the r-KdV hierarchy. Using this and
their work on tautological relations, Faber, Shadrin and Zvonkine proved in
[7] that Witten’s r-spin conjecture is true.

The second example is formed by Seiberg and Witten’s complete solution
of four-dimensional N = 2 supersymmetric Yang-Mills theory. Integrability in
Seiberg-Witten theory was discovered by I.Krichever, A.Gorsky, A.Marshakov,
A.Mironov and A.Morozov, [8], where it was shown that the effective low
energy partition functions is a τ -function of the Whitham hierarchy related to
Hitchin type integrable systems. Also, the extended version of Seiberg-Witten
theory, see [9], has a link with an integrable hierarchy. A detailed treatment
of integrability in Seiberg-Witten theory can be found in [10].

The third example is the AdS/CFT correspondence formulated by Malda-
cena in 1997, stating that a string theory on Anti-de Sitter space is equivalent
to a conformal field theory on its boundary. It has become clear , by the
work of several authors, see e.g. [11], [12] and [13], that on both sides of this
correspondence integrable systems, like spin chains and sigma models, play an
important role. These integrable systems may be used to check the correspon-
dence.

Dealing with supersymmetric gauge theories, one is naturally led to consider
N = 1 theories. According to [14], the extremal values of the superpotential
in these theories turn out to be described by a prepotential of some Seiberg-
Witten theory. Therefore, the whole machinery of Seiberg-Witten theory is
applicable in this theory too. Moreover, Dijkgraaf and Vafa have associated
in a series of papers, [15], [16] and [17], the corresponding prepotential with
the logarithm of the partition function of the Hermitian one-matrix model in
the leading order of the size N of the matrix. This leading order of the matrix
model is described by the Whitham hierarchy.

Another exciting common meeting ground for physicists and mathemati-
cians is that of mirror symmetry. This duality developed in the mid-80’s out
of the observation that a string propagating on a circle with radius R is phys-
ically equivalent to a string propagating on a circle with radius 1

R
. In order

to be mathematically consistent, one has to require in string theory that some
extra dimensions are to be added to spacetime, but on a different scale. Thus
one arrives at a so-called compactification of the theory. The form that these
additional dimensions should have became clear after the 1985 paper, [18], by
Candelas, Horowitz, Strominger, and Witten. They showed that by compact-
ifying string theory on a Calabi-Yau manifold, one obtains a theory roughly
similar to the standard model of particle physics that also consistently incor-
porates the idea of supersymmetry. In [19] and [20] it was shown that one
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could not reconstruct back from the compactification, the Calabi-Yau mani-
fold that was used to model the extra dimensions. In trying to do so, it led to
two options: type IIA and type IIB and this pair determines the duality. In
1990 Witten introduced in [21] a simplified version of string theory: topological
string theory and mirror symmetry survived in this new theory: [22] and [23].
Mirror symmetry attracted the interest of mathematicians around 1990, when
Candelas, de la Ossa, Green, and Parkes showed in [24] that it could be used as
a tool in enumerative geometry. The first striking relation with an integrable
hierarchy came, when Givental proved in [25] that Toda hierarchies lay at the
foundation of Gromov-Witten invariants of projective space. They are the key
element in his proof, [26], of mirror symmetry for these spaces. By now it has
become clear, [27], that topological strings on Calabi-Yau geometries form a
unifying picture, where topics as non-critical (super)strings, mirror symmetry,
integrable hierarchies and various matrix models connect.

In [28], Fukuma and Takebe showed that the Toda lattice hierarchy is rel-
evant for the description of deformations of conformal theories, while the KP
hierarchy describes unperturbed conformal theories. One of the things, they
proved was that the N -reduced system of the Toda lattice hierarchy corre-
sponds to the coset conformal model constructed from the affine Lie algebra
ŝln as investigated by Eguchi and Yang in [29].

The above examples illustrate sufficiently that integrable hierarchies play a
crucial role in various parts of theoretical physics and that it is important to
have a profound insight into their structure. In the present paper we work like
Fukuma and Takebe with sln-loops and we consider specific deformations of
three Lie subalgebras of t-loops, with t a commutative complex Lie subalgebra
of sln(C). The deformed generators of each space of t-loops should satisfy
a certain set of Lax equations and this defines three integrable hierarchies.
We treat the algebraic and geometric properties of these hierarchies, their
interrelations and we construct a wide class of solutions. Since there is in
our considerations no need, like in [30], [31] and [32], to choose t to be a
Cartan subalgebra, we drop this condition and obtain thus a wider class of
deformations.

Recall that integrable hierarchies often occur as the evolution equations of
the generators of a deformation of a commutative Lie subalgebra c of some Lie
algebra g. Both the deformation and the evolution equations are determined
by a splitting of g in the direct sum of two Lie subalgebras, like in the Adler-
Kostant-Symes Theorem [33]. This gives then rise to a compatible set of Lax
equations, a so-called hierarchy and the simplest nontrivial equation often
determines the name of the hierarchy.

In our situation we take for c three spaces of t-loops. Note that one can just
as well choose the commutative Lie subalgebra t of sln(C) to be of maximal
dimension to include as much commuting flows as possible and this will be
done from now on. Two concrete examples one can think of, are the diagonal
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matrices td in sln(C) or its unipotent counterpart

tu =


h =

n−1∑
i=1

aiB
i with all ai ∈ C and B =


0 1 0 . . . 0

0 . . . . . . . . . ...
... . . . . . . . . . 0
... . . . . . . . . . 1
0 . . . . . . 0 0




.

In gln(C) such maximal commutative algebras were classified in [34] and this
translates directly to one in sln(C). Let the {Eα | 1 6 α 6 r} be a basis of t
and let z be the loop parameter. Our first choice for c is the space C>0 of all
polynomial loops with values in t with the basis {Eαzi | i > 0, 1 6 α 6 r}.
We are interested in certain deformations of the {Eα} where the evolution
equations of these perturbed loops are determined by the projection of sln-
loops onto their part containing only positive powers of z. This leads to the
(sln(C), t)-hierarchy.

Example 1.1. For n = 2 and t = td, the (sl2(C), td)-hierarchy is the AKNS-
hierarchy, introduced in [35]. They are the evolution equations of a deformation
of the matrix ( −i 0

0 i ) and the simplest nontrivial equations in this hierarchy are
the AKNS-equations. Recall that this is the system of differential equations
for two complex functions q and r, depending of the variables x and t:

i
∂

∂t
q(x, t) := iqt = −1

2
qxx + q2r,(1)

i
∂

∂t
r(x, t) := irt =

1
2
rxx − qr2.

Ablowitz, Kaup, Newell and Segur showed in [36] that the initial value problem
of (1) could be solved with the Inverse Scattering Transform, which explains
the abbreviation.

The second choice for c is the Lie subalgebra C>0 of C>0 spanned by the
elements {Eαzi | i > 0, 1 6 α 6 r}. In this case we consider more general
deformations of the generators {Eαz | 1 6 α 6 r} and their evolution equa-
tions involve now the projection of sln-loops onto their part containing only
strict positive powers of z. This brings you to the so-called strict (sln(C), t)-
hierarchy. We follow here the terminology used in similar situations: [37] and
[38].

A detailed description of both integrable hierarchies and their properties can
be found in the next section. In the third section we introduce, inspired by
[39], certain deformations of the Lie algebra

C = {
∑
i∈Z

∑
16α6r

tiαEαz
i | tiα ∈ C and tiα 6= 0 for a finite number of i}

and a set of evolution equations they have to satisfy. It will be shown that
this system can be seen as a merging of the (sln(C), t)-hierarchy and its strict
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version. Therefore we call it the combined (sln(C), t)-hierarchy. Also this com-
bined system turns out to be compatible. The subsequent section is devoted
to the description of the linearization of the combined hierarchy, which is use-
ful for the construction of its solutions. We conclude with giving a geometric
construction, starting from a space of sln-loops, of solutions of the combined
(sln(C), t)-hierarchy.

2. The (sln(C), t)-hierarchy and its strict version

We present here an algebraic description of the (sln(C), t)-hierarchy and its
strict version that underlines the deformation character of these hierarchies
as pointed out in the introduction. Recall that in the case of the AKNS-
hierarchy, one worked with sl2-loops, where the coefficients of the powers of
the loop parameter z are sl2-matrices depending of various parameters. Here
we discuss such sln-loops. We formalize this algebraically as follows: let R be
a commutative complex algebra that should be seen as the source from which
the coefficients of the n×n -matrices are taken. We will work in the Lie algebra
sln(R)[z, z−1) consisting of all elements

(2) X =
N∑

i=−∞

Xiz
i, with all Xi ∈ sln(R)

and the bracket

[X, Y ] = [
N∑

i=−∞

Xiz
i,

M∑
j=−∞

Yjz
j] :=

N∑
i=−∞

M∑
j=−∞

[Xi, Yj]zi+j.

We will also make use of the slightly more general Lie algebra gln(R)[z, z−1),
where the coefficients in the z-series from (2) are taken from gln(R) instead
of sln(R) and the bracket is given by the same formula. In the Lie algebra
gln(R)[z, z−1) we decompose elements in two ways. The first is as follows:

(3) X =
N∑

i=−∞

Xiz
i =

N∑
i=0

Xiz
i +

−1∑
i=−∞

Xiz
i =: π>0(X) + π<0(X)

and this induces the splitting

(4) gln(R)[z, z−1) = π>0(gln(R)[z, z−1))⊕ π<0(gln(R)[z, z−1)),

where the two Lie subalgebras π>0(gln(R)[z, z−1)) and π<0(gln(R)[z, z−1)) are
given by

π>0(gln(R)[z, z−1)) = {X ∈ gln(R)[z, z−1) | X = π>0(X)} and

π<0(gln(R)[z, z−1)) = {X ∈ gln(R)[z, z−1) | X = π<0(X)}.

By restriction it leads to a similar decomposition for sln(R)[z, z−1), which is
relevant for the (sln(C), t)-hierarchy. The second way to decompose elements
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of gln(R)[z, z−1) is:

(5) X =
N∑

i=−∞

Xiz
i =

N∑
i=1

Xiz
i +

0∑
i=−∞

Xiz
i =: π>0(X) + π60(X).

This yields the splitting

(6) gln(R)[z, z−1) = π>0(gln(R)[z, z−1))⊕ π60(gln(R)[z, z−1)).

By restricting it to sln(R)[z, z−1), we get a similar decomposition for this
Lie algebra, which relates, as we will see further on, to the strict version
of the (sln(C), t)-hierarchy. The two Lie subalgebras π>0(gln(R)[z, z−1)) and
π60(gln(R)[z, z−1)) in (6) are defined in a similar way as the first two Lie
subalgebras

π>0(gln(R)[z, z−1)) = {X ∈ gln(R)[z, z−1) | X = π>0(X)} and

π60(gln(R)[z, z−1)) = {X ∈ gln(R)[z, z−1) | X = π60(X)}.

Next we describe the form of the deformations of the Lie algebras C>0 resp.
C>0. We start with those of C>0. Note that C>0 = π>0(C) is a commutative
algebra in the first component of the decomposition (4) and our interest is
in perturbations of C>0 obtained by conjugation with elements from a group
connected to π<0(gln(R)[z, z−1)), the complement of π>0(gln(R)[z, z−1)) in (4).
Note now that for each X ∈ π<0(gln(R)[z, z−1)) the exponential map yields a
well-defined element of the form

(7) exp(X) =
∞∑
k=0

1
k!
Xk = Id +Y, Y ∈ π<0(gln(R)[z, z−1)),

and with the formula for the logarithm one retrieves X back from Y . One
verifies directly that the elements of the form (7) form a group w.r.t. multipli-
cation and this we see as the group G<0 corresponding to π<0(gln(R)[z, z−1)).
Clearly, each Lie algebra gC>0g

−1, g ∈ G<0, is commutative.
Now we discuss the shape of the deformations of C>0. Note that C>0 =

π>0(C) is a commutative algebra in the first component of the decomposi-
tion (6) and our interest is in perturbations of C>0 obtained by conjugation
with elements from a group linked to π60(gln(R)[z, z−1)), the complement of
π>0(gln(R)[z, z−1)) in (6). In the case of the Lie subalgebra π60(gln(R)[z, z−1)),
one cannot move back and forth between the Lie algebra and its group. Nev-
ertheless, one can assign a proper group to this Lie algebra. A priori, the
exponential exp(Y ) of an element Y ∈ π60(gln(R)[z, z−1)), does not have to
define an element in π60(gln(R)[z, z−1)). That requires convergence conditions.
However, if it does, then it belongs to

G60 = {K =
∞∑
j=0

Kjz
−j | all Kj ∈ gln(R), K0 ∈ gln(R)∗},
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where gln(R)∗ denotes the elements in gln(R) that have a multiplicative inverse
in gln(R). It is a direct verification that G60 is a group and we see it as a proper
group corresponding to the Lie algebra π60(gln(R)[z, z−1)). In fact, as a group
G60 is isomorphic to the semi-direct product of G<0 and gln(R)∗. Note that
also every Lie algebra gC>0g

−1, g ∈ G60, is commutative.
Despite of the fact that the deformations of C>0 and C>0 described above,

involve gln(R)-loops, the deformed Lie algebras remain in sln(R)[z, z−1). For
there holds

Lemma 2.1. The group G60 acts by conjugation on sln(R)[z, z−1).

Proof. Take first any g ∈ G<0. Then there is an X ∈ π<0(gln(R)[z, z−1)) such
that g = exp(X). Since there holds for every Y ∈ sln(R)[z, z−1)

gY g−1 = exp(X)Y exp(−X) = ead(X)(Y ) = Y +
∞∑
k=1

1
k!

ad(X)k(Y )

and this shows that the coefficients for the different powers of z in this expres-
sion are commutators of elements of gln(R) and sln(R) and that proofs the
claim for elements from G<0. Since conjugation with an element from gln(R)∗

maps sln(R) to itself, the same holds for sln(R)[z, z−1). This proves the full
claim. �

Next we have a more detailed look at the different deformations. Since the
elements zm Id,m ∈ Z, are central in gln(R)[z, z−1), the deformations of C>0

by elements of G<0 are determined by that of the {Eα}:

gEαz
mg−1 = gEαg

−1zm, g ∈ G<0,m > 0.

Therefore we focus for g = exp(X) = exp(
∑∞

j=1Xjz
−j) ∈ G<0 on the {gEαg−1}.

These deformed generators have the form

Uα = gEαg
−1 = exp(X)Eα exp(−X) :=

∞∑
i=0

Uα,iz
−i

= Eα + [X1, Eα]z−1 + {[X2, Eα] +
1
2

[X1, [X1, Eα]]}z−2 + · · ·(8)

Remark 2.2. In the case of the (sl2(C), td)-hierarchy we only have to deal with
the deformation U1 of the matrix E1 = ( −i 0

0 i ). From formula (8) we see directly

that, if each Xi =
(
−αi βi
γi αi

)
, i = 1, 2, then U1,0 = E1,

(9) U1,1 :=
(

0 q
r 0

)
=
(

0 2iβ1

−2iγ1 0

)
,

and

(10) U1,2 :=
(
u11 u12

u21 u22

)
=
(

−2iβ1γ1 2i(β2 − α1β1)
−2i(γ2 + α1γ1) 2iβ1γ1

)
.
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In particular we get in this way that u11 = −i qr2 and u22 = i qr2 . We will see
at a later stage that the deformation equations imply that also the coefficients
u12 and u21 can expressed in q, u and their derivatives.

By the same argument, the deformations of the Lie algebra C>0 by elements
from G60 are basically determined by those of the elements {Eαz}. So we
focus on the deformations of these elements. Using the same notations as
at the deformation of Eα by G<0, we get that the deformation of Eαz by a
Kg ∈ G60, with K ∈ gln(R)∗ and g ∈ G<0, looks like

Vα = KgEαzg
−1K−1 :=

∞∑
i=0

KUα,iK
−1z1−i =

∞∑
i=0

Vα,iz
1−i

= Vα,0z + [KX1K
−1, Vα,0] + · · · .(11)

Consequently, the corresponding deformation of each Eαzm,m > 1, is Vαzm−1.
Having fixed the type of deformation of the Lie algebras C>0 and C>0, we

need one more ingredient to discuss the hierarchies. In the case of deforming
C>0, all the basis elements

{Eαzm,m > 0, 1 6 α 6 r}
generate commuting flows and we want to study deformations of the type (8)
that depend of these flows. Therefore we assume that the algebra R possesses a
set {∂mα | m > 0, 1 6 α 6 r} of commuting C-linear derivations ∂mα : R→ R,
where each ∂mα should be seen as the derivation corresponding to the flow
generated by Eαzm. The data (R, {∂mα | m > 0, 1 6 α 6 r}) is called a setting
for the integrable hierarchy related to the perturbation of the Lie algebra C>0

to be introduced in a moment. Similarly, at deforming C>0, we require that
R has a collection of commuting C-linear derivations ∂mα : R → R, for the
indices m > 1, 1 6 α 6 r. Sticking to the same terminology, we call the data
(R, {∂mα | m > 1, 1 6 α 6 r}) also a setting for the integrable hierarchy
corresponding to the deformations of C>0 to be discussed here.

Example 2.3. Examples of settings for the respective hierarchies are the alge-
bras of complex polynomials C[tmα] in the variables {tmα | m > 0, 1 6 α 6 r}
resp. {tmα | m > 1, 1 6 α 6 r} or the formal power series C[[tmα]] in the same
variables, where both algebras are equipped with the derivations ∂mα = ∂

∂tmα

for the appropriate indices. Depending if one takes R equal to C[tmα] or
C[[tmα]], one speaks of the polynomial or formal power series solutions of the
hierarchies.

We let each derivation ∂mα, occurring in some setting, act coefficient wise
on the matrices from gln(R) and that defines then a derivation of this algebra.
The same holds for the extension to gln(R)[z, z−1) defined by

∂mα(X) :=
N∑

j=−∞

∂mα(Xj)zj.
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Now it is time to discuss the nonlinear equations that the deformations {Uα2}
of type (8) should satisfy. We want that their evolution w.r.t. the {∂mα1} is
given by: for all m > 0 and all α1, 1 6 α1 6 r,

(12) ∂mα1(Uα2) = [π>0(Uα1z
m), Uα2 ] = −[π<0(Uα1z

m), Uα2 ],

where the second identity follows from the fact that all {Uα1z
m} commute.

The equations (12) are called the Lax equations of the (sln(C), t)-hierarchy
and the deformation {Uα2} satisfying these equations is called a solution of
the hierarchy. Note that the {Uα = Eα} form a solution of the (sln(C), t)-
hierarchy and it is called the trivial one. Note that the equations (12) for
m = 0 are simply ∂0α1(Uα2) = [Eα1 , Uα2 ]. Therefore, if ∂0α1 = ∂

∂t0α1
and the

matrix coefficients of both exp(
∑

16α16r
t0α1Eα1) and its inverse belong to the

algebra R of matrix coefficients, then we can introduce the deformation Ûα2

given by

Ûα2 := exp(−
∑

16α16r

t0α1Eα1)Uα2 exp(
∑

16α16r

t0α1Eα1),

which is easily seen to satisfy ∂0α1(Ûα2) = 0, for all α1. This handles then the
dependence of Uα2 of the {t0α1}.

For the deformations {Vβ2} of the form (11) we require that the evolution
w.r.t. the {∂mβ1} is coupled to the decomposition (6) and it should satisfy: for
all m > 1 and all β1, 1 6 β1 6 r,

(13) ∂mβ1(Vβ2) = [π>0(Vβ1z
m−1), Vβ2 ] = −[π60(Vβ1z

m−1), Vβ2 ],

where the second identity follows from the fact that all {Vβ1z
m−1} commute.

Since the equations (13) correspond to the strict cut-off (5), they are called
the Lax equations of the strict (sln(C), t)-hierarchy and any set of deformation
{Vβ2} satisfying them, is called a solution of this hierarchy. Again there is al
least one solution: Vβ1 = Eβ1z, for all β1, 1 6 β1 6 r. It is called the trivial
solution of the hierarchy.

Remark 2.4. Assume t1 and t2 are conjugated under GLn(C), i.e. there is
a g ∈ GLn(C) such that t2 = gt1g

−1. Then one verifies directly that if the
{Uα} is a solution of the (sln(C), t1)-hierarchy or the {Vβ} of its strict version,
then the {gUαg−1} solve the Lax equations of the (sln(C), t2)-hierarchy and the
{gVβg−1} those of the strict (sln(C), t2)-hierarchy and in both cases this forms
a bijection between the two sets of solutions. Hence, it suffices to consider the
systems for one representative of each conjugacy class. In particular, we may
suppose that t is upper triangular.

For both systems (12) and (13) one can speak of compatibility. There holds
namely

Proposition 2.5. Both sets of Lax equations (12) and (13) are so-called com-
patible systems, i.e. the projections {Bmα := π>0(Uαzm) | m > 0, 1 6 α 6 r}
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satisfy the zero curvature relations

(14) ∂m1α1(Bm2α2)− ∂m2α2(Bm1α1)− [Bm1α1 , Bm2α2 ] = 0

and the projections {Cmβ := π>0(Vβzm−1) | m > 1, 1 6 β 6 r} satisfy the zero
curvature relations

(15) ∂m1β1(Cm2β2)− ∂m2β2(Cm1β1)− [Cm1β1 , Cm2β2 ] = 0

Proof. The idea is to show that the left hand side of (14) resp. (15) belongs to

sln(R)[z, z−1)>0 ∩ sln(R)[z, z−1)<0 resp. sln(R)[z, z−1)>0 ∩ sln(R)[z, z−1)60

and thus has to be zero. We give the proof for the {Cmβ}, that for the {Bmα}
is similar and is left to the reader. The inclusion in the first factor is clear
as both Cmβ and ∂nγ(Cmβ) belong to the Lie subalgebra sln(R)[z, z−1)>0. To
show the other one, we use the Lax equations (13). Note that the same Lax
equations hold for all the {zNVβ | N > 0}

∂mβ1(z
NVβ) = [π>0(Vβ1z

m−1), zNVβ].

By substituting Cmiβi = zmi−1Vβi − π<0(zmi−1Vβi) we get for

∂m1β1(Cm2β2)− ∂m2β2(Cm1β1) = ∂m1β1(z
m2−1Vβ2)− ∂m1β1(π60(zm2−1Vβ2))

− ∂m2β2(z
m1−1Vβ1) + ∂m2β2(π60(zm1−1Vβ1))

= [Cm1β1 , z
m2−1Vβ2 ]− [Cm2β2 , z

m1−1Vβ1 ]

− ∂m1β1(π60(zm2−1Vβ2)) + ∂m2β2(π60(zm1−1Vβ1))

and for

[Cm1β1 , Cm2β2 ] = [zm1−1Vβ1 − π60(zm1−1Vβ1), z
m2−1Vβ2 − π60(zm2−1Vβ2)]

= − [π60(zm1−1Vβ1), z
m2−1Vβ2 ] + [π60(zm2−1Vβ2), z

m1−1Vβ1 ]

+ [π60(zm1−1Vβ1), π60(zm2−1Vβ2)].

Taking into account the second identity in (13), we see that the left hand side
of (15) is equal to

−∂m1β1(π60(zm2−1Vβ2))+∂m2β2(π60(zm1−1Vβ1))−[π60(zm1−1Vβ1), π60(zm2−1Vβ2)].

This element belongs to the Lie subalgebra π60(sln(R)[z, z−1)) and that proves
the claim. �

Reversely, we have

Proposition 2.6. Suppose we have a deformation {Uα} of the type (8) and a
deformation {Vβ} of the type (11). Then there holds:

(1) Assume that the projections {Bmα := π>0(Uαzm) | m > 0, 1 6 α 6 r}
satisfy the zero curvature relations (14). Then the set {Uα} is a solution
of the (sln(C), t)-hierarchy.

(2) Similarly, if the projections {Cmβ := π>0(Vβzm−1) | m > 1, 1 6 β 6 r}
satisfy the zero curvature relations (15), then the set {Vβ} is a solution
of the strict (sln(C), t)-hierarchy.
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Proof. Again we prove the statement for the set {Vβ}, that for the {Uα} is
shown in a similar way. So, assume that there is one Lax equation (13) that
does not hold. Then there is a m > 1, a β1, 1 6 β1 6 r and a β2, 1 6 β2 6 r
such that

∂mβ1(Vβ2)− [Cmβ1 , Vβ2 ] =
∑

j6k(m,βi)

Xjz
j, with Xk(m,βi) 6= 0.

Since both ∂mβ1(Vβ2) and [Cmβ, Vβ2 ] are of order smaller than or equal to one
in z, we know that k(m,βi) 6 0. Further, we can say that for all N > 0

∂mβ1(z
NVβ2)− [Cmβ1 , z

NVβ2 ] =
∑

j6k(m,βi)

Xjz
j+N , with Xk(m,βi) 6= 0

and we see by letting N go to infinity that the right hand side can obtain any
sufficiently large order in z. By the zero curvature relation for the indices Nβ2

and mβ1 we get for the left hand side

∂mβ1(z
NVβ2)− [Cmβ1 , z

NVβ2 ] = ∂m(CNβ2)− [Cmβ1 , CNβ2 ] + ∂mβ1(π60(zNVβ2))

− [Cmβ1 , π60(zNVβ2)]

= ∂N(Cmβ1) + ∂mβ1(π60(zNVβ2))

− [Cmβ1 , π60(zNVβ2)]

and this last expression is of order smaller or equal to m in z. This contradicts
the unlimited growth in orders of z of the right hand side. Hence all Lax
equations (13) have to hold for Vβ2 . �

Because of the equivalence between the Lax equations (12) for the {Uα}
and the zero curvature relations (14) for the {Bmα}, we call this last set of
equations also the zero curvature form of the (sln(C), t)-hierarchy. Similarly,
the zero curvature relations (15) for the {Cmβ} is called the zero curvature
form of the strict (sln(C), t)-hierarchy.

Remark 2.7. We come back to example (2.2). Assume that the deformation
U1 of E1 discussed there is a solution of the (sl2(C), td)-hierarchy. We have
seen that the dependence of the parameter t01 is straightforward. Therefore
the first serious relation occurs for m1 = 2,m2 = 1 and α1 = α2 = 1. Consider
the relation (14) for these indices

∂21(E1z + U1,1) = ∂11(E1z
2 + U1,1z + U1,2) + [U1,2, E1z + U1,1].

Since E1 is constant, this identity reduces in sl2(R)[z, z−1)>0 to the following
two equalities

∂11(U1,1) = [E1, U1,2] and ∂21(U1,1) = ∂11(U1,2) + [U1,2, U1,1].(16)

The first gives an expression of the off-diagonal terms of U1,2 in the coefficients
q and r of U1,1, i.e.

u12 =
i

2
∂11(q) and q21 = − i

2
∂11(r).

                                                          Quarterly Physics Review, Vol. 3 Issue 2, July 2017
                      STRICT VERSIONS OF VARIOUS MATRIX HIERARCHIES RELATED TO SLN-LOOPS 
                                                                        AND THEIR COMBINATIONS

                       Copyright 2017 KEI Journals. All Rights Reserved                                                         Page │11 



Then the second equation becomes a system of equations solely in the coeffi-
cients q, r and their derivatives w.r.t. ∂11 and ∂21. A direct computation shows
that it amounts to the AKNS-equations (1), if one has ∂11 = ∂

∂x
and ∂21 = ∂

∂t
.

Besides the zero curvature relations for the cut-off’s {Bmα} resp. {Cmβ}
corresponding to respectively a solution {Uα} of the (sln(C), t)-hierarchy and
a solution {Vβ} of the strict (sln(C), t)-hierarchy, also other parts satisfy such
relations. Define for all α, 1 6 α 6 r, and all β, 1 6 β 6 r,

Amα := Bmα − Uαzm,m > 0, and Dmβ := Cmβ − Vβzm−1,m > 1.

Then we can say

Corollary 2.8. The following relations hold:
• The parts {Amα | m > 0, 1 6 α 6 r} of a solution {Uα} of the

(sln(C), t)-hierarchy satisfy

∂m1α1(Am2α2)− ∂m2α2(Am1α1)− [Am1α1 , Am2α2 ] = 0.

• The parts {Dmβ | m > 1, 1 6 β 6 r} of a solution {Vβ} of the strict
(sln(C), t)-hierarchy satisfy

∂m1β1(Dm2β2)− ∂m2β2(Dm1β1)− [Dm1β1 , Dm2β2 ] = 0

Proof. Again we show the result only in the strict case. Recall that the
{Vβ2z

m2−1} satisfy Lax equations similar to the {Vβ2}

∂m1β1(Vβ2z
m2−1) = [Dm1β1 , Vβ2z

m2−1], i > 1.

Now we substitute in the zero curvature relations for the {Cmβ} everywhere
the relation Cmβ = Dmβ + Vβz

m−1 and use the above Lax equations and the
fact that all the {Vβzm−1} commute. This yields the desired result. �

3. The combined (sln(C), t)-hierarchy

The commutative Lie subalgebra C, where the combined hierarchy is based
upon, is the complex algebra with basis {Eαzm | m ∈ Z, 1 6 α 6 r}. It is
a Lie subalgebra of both sln(R)[z, z−1) and sln(R)[z−1, z), where this last Lie
algebra consists of loops that have at most a pole around zero:

sln(R)[z−1, z) = {
∞∑

i=−N

Xiz
i | all Xi ∈ sln(R)}.

The algebra C can be split into C = C>0 ⊕ C<0, where C>0 is spanned by
the {Eαzm | m > 0, 1 6 α 6 r} and C<0 by the {Eαzm | m < 0}. Now we
are interested in deforming both C>0 and C>0, the first inside sln(R)[z, z−1)
and the second inside sln(R)[z−1, z). This may cause that the deformations
of C>0 and C>0 no longer commute. Since the powers of z are central, it is
enough to consider the deformations of the elements {Eα | 1 6 α 6 r} and the
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{Eαz−1 | 1 6 α 6 r}. We deform the elements {Eα} as in the (sln(C), t)-case
with an element of the group

G<0 = {Id +Y<0 | Y<0 ∈ gln(R)[z, z−1)<0}
and that leads to a collection of deformations Uα = Uα(z) =

∑∞
j>0 Uαjz

−j as
in (8). The elements {Eαz−1}, on the contrary, we deform with an element
from the group

G>0 = {X = X0 +X>1 | X0 ∈ gln(R)∗, X>1 ∈ gln(R)[z−1, z)>0}
to elements

(17) Wα = Wα(z) := XEαz
−1X−1 =

∞∑
j=0

Sjz
j−1 ∈ sln(R)[z−1, z).

If one makes in Wα(z) the substitution z → z−1, then one gets deformations

Vα(z) = Wα(
1
z

) as considered in (11) at the strict (sln(C), t)-hierarchy. So, after
deforming the basis of C, we are left with two sets {Uαzm | m > 0, 1 6 α 6 r}
and {Wαz

m+1 | m < 0, 1 6 α 6 r} that each span a commutative Lie algebra,
but do not have to commute among each other.

Next we discuss the Lax equations that the deformation ({Uα}, {Wβ}) of
the basis of C should satisfy. Thereto we assume that the algebra R possesses
a collection {∂mα | m ∈ Z, 1 6 α 6 r} of commuting C-linear derivations
∂mα : R→ R, where each ∂mα should be seen as an algebraic substitute for the
derivation corresponding to the flow generated by each element Eαzm in the
basis of C. For X ∈ gln(R)[z, z−1) or X ∈ gln(R)[z−1, z) we define the action
of each ∂mα by

∂mα(X) :=
∑
j

∂mα(Xj)zj,

where the action on gln(R) is defined coefficient wise. This defines a derivation
of both algebras. Following the terminology used in Section 2 , we call the data
(R, {∂mα | m ∈ Z, 1 6 α 6 r}) a setting for the combined (sln(C), t)-hierarchy.

Example 3.1. Examples of settings are for the moment the algebras of complex
polynomials C[tmα] in the variables {tmα | m ∈ Z} or the formal power series
C[[tmα]] in the same variables; both algebras equipped with the derivations
∂mα = ∂

∂tmα
,m ∈ Z, 1 6 α 6 r. Later, at the construction of the solutions,

more sophisticated choices for R will occur.

Now we want that the sets of deformations ({Uα}, {Wβ}) satisfy the follow-
ing evolution equations:

∂mα1(Uα2) = [π>0(Uα1z
m), Uα2 ] and ∂mα1(Wβ) = [π>0(Uα1z

m),Wβ],(18)
for all m > 0 and all {αi}, β ∈ [1, r] ∩ Z;

∂mβ1(Wβ2) = [π<0(Wβ1z
m+1),Wβ2 ] and ∂mβ1(Uα) = [π<0(Wβ1z

m+1), Uα],(19)
for all m < 0 and all {βj}, α ∈ [1, r] ∩ Z.
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Note that the first set of equations in (18) imply that the {Uα} satisfy the Lax
equations of the (sln(C), t)-hierarchy w.r.t. the {∂mα | m > 0, 1 6 α 6 r} and
the first set of equations in (19) imply that, when you translate the {Wβ} back
to gln(R)[z, z−1) by Vβ(z) = Wβ(1

z
), then these {Vβ} solve the strict (sln(C), t)-

hierarchy w.r.t. the {∂mβ | m < 0, 1 6 β 6 r}. Therefore we call the equations
(18) and (19) the Lax equations of the combined (sln(C), t)-hierarchy and the
deformation ({Uα}, {Wβ}) satisfying these equations a solution of the combined
(sln(C), t)-hierarchy. Note that the trivial perturbation ({Eα}, {Eβz−1}) solves
this system as in the unperturbed situation all elements of the basis of C
commute and moreover, are constants for all the derivations {∂mα}. We refer
to it as the trivial solution.

Also the system of Lax equations (18) and (19) is compatible, for there holds

Proposition 3.2. Let the deformation ({Uα}, {Wβ}) be a solution of the com-
bined (sln(C), t)-hierarchy and consider the projections {Bmα := π>0(Uαzm)}
resp. {Cmβ := π<0(Wβz

m+1)} that occur in the Lax equations of the combined
hierarchy. Now these projections satisfy the following zero curvature relations:
for all {αi} and {βj} in [1, r] ∩ Z

∂m1β1(Bm2α2)− ∂m2α2(Cm1β1)− [Cm1β1 , Bm2α2 ] = 0 if m1 < 0, m2 > 0,(20)
∂m1α1(Bm2α2)− ∂m2α2(Bm1α1)− [Bm1α1 , Bm2α2 ] = 0 if m1 > 0, m2 > 0,(21)
∂m1β1(Cm2β2)− ∂m2β2(Cm1β1)− [Cm1β1 , Cm2β2 ] = 0 if m1 < 0, m2 < 0.(22)

Proof. The relations (21) and (22) follow from Proposition 2.5, so we merely
have to proof the mixed relation (20). The main idea of the proof is to show
that the left hand side of the equation in (20) belongs to both π>0(sln(R)[z, z−1))
and π<0(sln(R)[z, z−1)) and therefore has to be equal to zero.

Since the powers of z are central and the second set of equations in (19)
holds for the {Uα}, we know that we have for all m2 > 0 and all m1 < 0

∂m1β1(Uα2z
m2) = [π<0(Wβ1z

m1+1), Uα2z
m2 ] = [Cm1β1 , Uα2z

m2 ].

Combining this with the substitution Bm2α2 = Uα2z
m2 − π<0(Uα2z

m2) we get
that

∂m1β1(Bm2α2)− [Cm1β1 , Bm2α2 ] = −∂m1β1(π<0(Uα2z
m2)) + [Cm1β1 , π<0(Uα2z

m2)]

and the right hand side of this expression clearly belongs to π<0(sln(R)[z, z−1)).
Now ∂m2α2(Cm1β1) also belongs to this Lie subalgebra, so we see that the whole
left hand side of (20) lies inside π<0(sln(R)[z, z−1)).

To get the other inclusion, we use the second set of Lax equations for the
{Wβ} in (18). For the same reason as above, we get then that for all m1 < 0
and all m2 > 0 there holds

∂m2α2(Wβ1z
m1+1) = [(Uα2z

m2)>0,Wβ1z
m1+1] = [Bm2α2 ,Wβ1z

m1+1].

Again we combine this expression with the substitution Cm1β1 = Wβ1z
m1+1 −

π>0(Wβ1z
m1+1) and obtain that

−∂m2α2(Cm1β1)−[Cm1β1 , Bm2α2 ] = ∂m2α2(π>0(Wβ1z
m1+1))+[π>0(Wβ1z

m1+1), Bm2α2 ]
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The right hand side of this expression clearly belongs to the Lie algebra
π>0(sln(R)[z, z−1)). The same is true for the term ∂m1β1(Bm2α2) and that
proves the other inclusion. �

The reverse statement also holds:

Proposition 3.3. Suppose we have a deformation {Uα} of the type (8) and a
deformation {Wβ} of the form (17). Assume that the two sets of projections
{Bmα := π>0(Uαzm)} and {Cmβ := π<0(Wβz

m+1)} satisfy the zero curvature
relations (20), (21) and (22). Then the deformation ({Uα}, {Wβ}) of the initial
basis {Eαzm} of C is a solution of the combined (sln(C), t)-hierarchy.

Proof. It has been shown in Proposition 2.6 that the set of zero curvature
relations (21) suffice to prove the first set of Lax equations in (18). Also the
first set of Lax equations in (19) follows from the zero curvature relations (22).
So, assume first that one of the remaining Lax equations for one of the {Uα}
does not hold, then there is a `1 < 0 such that

∂`1β(Uα)− [(Wβz
`1+1)<0, Uα] = ∂`1(Uα)− [C`1β, Uα] =

∑
k6k2

Akz
k, with Ak2 6= 0.

This implies for all ` > 0 that

(23) ∂`1β(Uαz`)− [C`1β, Uαz
`] =

∑
k6k2

Akz
k+`

and by letting ` go to infinity, you see that nonzero terms with unlimited high
powers of z occur in the expression (23). On the other hand, we can split the
expression and substitute the identity (20) for m1 = `1 and m2 = `, yielding

∂`1β(Uαz`)− [C`1β, Uαz
`] = ∂`1β(B`α)− [C`1β, B`α] + ∂`1β(π<0(Uαz`))

− [C`1β, π<0(Uαz`)]

= ∂`α(C`1β) + ∂`1β(π<0(Uαz`))− [C`1β, π<0(Uαz`)]

and this last expression has only negative powers of z. This contradicts the
unlimited growth of these powers, so all the Lax equations for the {Uα} have
to hold. So, one can only have one of the remaining Lax equations of one of
the {Wβ} to be wrong. Suppose, there is a s1 > 0 such that we have

∂s1α(Wβ)−[π>0(Uαzs1),Wβ] = ∂s1α(Wβ)−[Bs1α,Wβ] =
∑
k>k1

Dkz
k, with Dk1 6= 0.

Then we get similarly for all s < 0 that

(24) ∂s1α(Wβz
s+1)− [Bs1α,Wβz

s+1] =
∑
k>k1

Dkz
k+s+1

and by letting s go to minus infinity, one sees that there is no lower bound for
the powers of z in expression (24) with nonzero coefficients. Again we split the
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expression and substitute relation (20) for m1 = s and m2 = s1. This results
in

∂s1α(Wβz
s+1)− [Bs1α,Wβz

s+1] = ∂s1α(Csβ)− [Bs1α, Csβ] + ∂s1α(π>0(Wβz
s+1))

−[Bs1α, π>0(Wβz
s+1)] = ∂sβ(Bs1α) + ∂s1α(π>0(Wβz

s+1))− [Bs1α, π>0(Wβz
s+1)]

and now this last expression contains only positive powers of z. Again a
contradiction and thus also the Lax equations for all the {Wβ} hold. This
proves this Proposition. �

4. The linearization of the combined (sln(C), t)-hierarchy

The zero curvature form of the combined (sln(C), t)-hierarchy points at the
possible existence of a linear system of which the zero curvature equations form
the compatibility conditions. In [38] we produced such linearizations for both
the AKNS-hierarchy and its strict version. We adept those to the setting here
and the presence of the additional variables.

So we start with a deformation ({Uα}, {Wβ}) of the initial basis {Eαzm}
of C that is a potential solution to the combined (sln(C), t)-hierarchy As in
the foregoing Section we associate with such a pair two sets of projections the
{Bmα := π>0(Uαzm)} and the {Cmβ := π<0(Wβz

m+1)}. Then the linearization
of the combined (sln(C), t)-hierarchy consists of the system

Uαψ = ψEα, ∂mα(ψ) = Bmαψ, for all m > 0, α, α ∈ [1, r] ∩ Z, and(25)
∂mβ(ψ) = Cmβψ, for all m < 0, β ∈ [1, r] ∩ Z,
Wβϕ = ϕEβz

−1, ∂mβ(ϕ) = Cmβϕ, for all m < 0, β ∈ [1, r] ∩ Z, and(26)
∂mα(ϕ) = Bmαϕ, for all m > 0, α ∈ [1, r] ∩ Z.

Without specifying ψ and ϕ, we first show what is needed to get from (25)
and (26) the Lax equations for {Uα} and the {Wβ}. In fact, we give the
manipulations for the {Uα}, those for the {Wβ} are similar. First we apply
∂mα1 ,m > 0, α1 ∈ [1, r] ∩ Z, to the first equation in (25) and use the first two
equations in the sequel

∂mα1(Uα2ψ − ψEα2) = ∂mα1(Uα2)ψ + Uα2∂mα1(ψ)− ∂mα1(ψ)Eα2 = 0
= ∂mα1(Uα2)ψ + Uα2Bmα1ψ −Bmα1ψEα2

= {∂mα1(Uα2)− [Bmα1 , Uα2 ]}ψ = 0.(27)

Now we carry out the same computation for ∂mβ,m < 0, β ∈ [1, r] ∩ Z, make
use of the first and third equation in (25) and obtain:

∂mβ(Uαψ − ψEα) = ∂mβ(Uα)ψ + Uα∂mβ(ψ)− ∂mβ(ψ)Eα = 0
= ∂mβ(Uα)ψ + UαCmβψ − CmβψEα
= {∂mβ(Uα)− [Cmβ, Uα]}ψ = 0.(28)

If we can scratch ψ from both equations (27) and (28), then we obtain the
desired Lax equations for each Uα. Summarizing the manipulations carried
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out, we need, first of all, a left action of elements like Uα, Bmα and Cmβ. Next
there should be a right action of Eα and an appropriate left action of all the
∂mα,m ∈ Z, that obeys a Leibnitz rule w.r.t. the action of the elements from
sln(R)[z, z−1) and finally the scratch procedure. This can all be realized for
suitable ψ in an appropriate gln(R)[z, z−1)-module. Similarly, one can deduce
the Lax equations for the {Wβ} from (26) if ϕ is a suitable vector in a certain
gln(R)[z−1, z)-module.

To get an idea of these modules, we first have a look at the linearization
for the trivial solutions Uα = Eα and Wβ = Eβz

−1. Then the projections are
Bmα = Eαz

m,m > 0, α ∈ [1, r] ∩ Z, and Cmβ = Eβz
m,m < 0, β ∈ [1, r] ∩ Z,

and the equations of the linearization become

Eαψ0 = ψ0Eα, ∂mα(ψ0) = Eαz
mψ0, , m > 0, α ∈ [1, r] ∩ Z, and(29)

∂mβ(ψ0) = Eβz
mψ0, m < 0, β ∈ [1, r] ∩ Z,

Eαz
−1ϕ0 = ϕ0Eαz

−1, ∂mβ(ϕ) = Eβz
mϕ, , m < 0, β ∈ [1, r] ∩ Z and(30)

∂mα(ϕ) = Eαz
mϕ, m > 0, α ∈ [1, r] ∩ Z.

Assuming that each derivation ∂mα equals ∂
∂tmα

and writing t as a short hand
notation for all the flow parameters {tmα | m ∈ Z, α ∈ [1, r] ∩ Z}, one arrives
for (29) and (30) at the solution (ψ0, ϕ0)

ψ0 = ψ0(t, z) = exp(
∑
m∈Z

r∑
α=1

tmαEαz
m) = ϕ0(t, z) = ϕ0.

General ψ should be gln(R)[z, z−1)-perturbations of ψ0, i.e. they should belong
to

(31) M>0 =

{
{g(z)}ψ0 | g(z) =

N∑
i=−∞

giz
i ∈ gln(R)[z, z−1)

}
and general ϕ should be gln(R)[z−1, z)-perturbations of ϕ0, i.e. they should
belong to

(32) M<0 =

{
{h(z)}ϕ0 | h(z) =

∞∑
i=−N

hiz
i ∈ gln(R)[z−1, z)

}
,

where the products {g(z)}ψ0 and {h(z)}ϕ0 should be seen as formal and both
factors should be kept separate to avoid convergence issues. On both M>0

and M<0 one can define the required actions: for each k1(z) ∈ gln(R)[z, z−1)
and each k2(z) ∈ gln(R)[z−1, z) define

k1(z).{g(z)}ψ0 := {k1(z)g(z)}ψ0 resp. k2(z).{h(z)}ϕ0 := {k2(z)h(z)}ϕ0.

The right hand action of each Eα on M>0 resp. Eαz−1 on M<0 we define by

{g(z)}ψ0Eα := {g(z)Eα}ψ0 resp. {h(z)}ϕ0Eαz
−1 := {h(z)Eαz−1}ϕ0
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and the action of each ∂mα by

∂mα({g(z)}ψ0) =

{
N∑

i=−∞

∂mα(gi)zi +

{
N∑

i=−∞

giEαz
i+m

}}
ψ0,

∂mα({h(z)}ϕ0) =

{
∞∑

i=−N

∂mα(hi)zi +

{
∞∑

i=−N

hiEαz
i+m

}}
ϕ0.

Analogous to the terminology in the scalar case, see [40], we call the elements
of M>0 oscillating matrices at infinity and those of M<0 oscillating matri-
ces at zero. Note that M>0 is a free gln(R)[z, z−1)-module and M<0 a free
gln(R)[z−1, z)-modules with respective generators ψ0 and ϕ0, because for each
k1(z) ∈ gln(R)[z, z−1) and k1(z) ∈ gln(R)[z−1, z) we have

k1(z).ψ0 = k1(z).{1}ψ0 = {k1(z)}ψ0 resp. k2(z).ϕ0 = k2(z).{1}ψ0 = {k2(z)}ϕ0.

Hence, in order to be able to perform legally the scratching of both vectors
ψ = {k1(z)}ψ0 and ϕ = {k2(z)}ϕ0, it is enough to find oscillating matrices such
that k1(z) is invertible in gln(R)[z, z−1) and likewise k2(z) in gln(R)[z−1, z).
We will now introduce a collection of such elements that will occur at the
construction of solutions of the hierarchy.

Recall from Section 3 that we may assume that t is realized in the upper
triangular matrices. For each l = (li) ∈ Zn, we define the n×n-matrix δ(l) by

δ(l) =

zl1 0 0

0 . . . 0
0 0 zln

 ∈ gln(R)[z, z−1].

The collection of all these matrices forms a group ∆ and we consider its sub-
group ∆(t) of all matrices

∆(t) = {δ(l) ∈ ∆ | [δ(l), Eα] = 0 for all α, 1 6 α 6 r} .
For each δ(l) ∈ ∆(t), an element ψ ∈M>0 is called an oscillating matrix at

infinity of type δ(l), if it has the form

(33) ψ = {k1(z)δ(l)}ψ0, with k1(z) ∈ G<0,

and is an example of a generator of M>0. Similarly, an element ϕ ∈ M<0 is
called an oscillating matrix at zero of type δ(l), with δ(l) ∈ ∆(t), if it has the
form

(34) ϕ = {k2(z)δ(l)}ϕ0, with k2(z) ∈ G>0,

and such a ϕ generates M<0. Hence, for any pair (ψ, ϕ) ∈ M>0 ×M<0 with
ψ of the form (33) and ϕ of the form (34) the scratching procedure is valid.

Now let the deformation ({Uα}, {Wβ}) be a potential solution of the com-
bined (sln(C), t)-hierarchy and let (ψ, ϕ) be a pair in M>0 ×M<0 with ψ of
the form (33) and ϕ of the form (34), for which the linearization equations (27)
and (28) hold. Then all the manipulations necessary to get the Lax equations
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(18) and (19), are valid. Hence, the set ({Uα}, {Wβ}) is a solution of the com-
bined (sln(C), t)-hierarchy, and we call the pair (ψ, ϕ) a set of wave matrices
of the combined (sln(C), t)-hierarchy of type δ(l). In particular, the pair (ψ, ϕ)
totally determines the solution ({Uα}, {Wβ}), for the first equations in (27)
and (28), imply respectively

Uαk1(z)δ(l) = k1(z)Eαδ(l)⇒ Uα = k1(z)Eαk1(z)−1,

Wβk2(z)δ(l) = k2(z)Eβz−1δ(l)⇒ Wβ = k2(z)Eβz−1k2(z)−1.

There is a milder condition that pairs of oscillating matrices of a certain type
have to satisfy, in order to become a set of wave matrices of the combined
(sln(C), t)-hierarchy.

Proposition 4.1. Let ψ = {k1(z)δ(l)}ψ0 be an oscillating matrix of type δ(l)
in M>0 and let ϕ = {k2(z)δ(l)}ϕ0 be such a matrix in M<0. Denote the
corresponding potential solution of the combined (sln(C), t)-hierarchy by

Uα := k1(z)Eαk1(z)−1, resp.Wβ = k2(z)Eβz−1k2(z)−1.

If there exists for each m > 0, 1 6 α 6 r, an element Mmα ∈ π>0(gln(R)[z, z−1))
such that

∂mα(ψ) = Mmαψ and ∂mα(ϕ) = Mmαϕ

and, moreover, for all m < 0, 1 6 β 6 r, there exists an Nmβ ∈ π>0(gln(R)[z−1, z))
such that

∂mβ(ψ) = Nmβψ and ∂mβ(ϕ) = Nmβϕ.

Then each Mmα = π>0(Eαzm), and each Nmβ = π<0(Wβz
m+1) and the pair

(ψ, ϕ) is a set of wave matrices for the combined (sln(C), t)-hierarchy of type
δ(l).

Proof. For m > 0 we use the fact thatM>0 is a free gln(R)[z, z−1)-module with
generator ψ0. This property enables us to translate the equation ∂mα(ψ) =
Mmαψ into an equation in gln(R)[z, z−1):

∂mα(k1(z)) + k1(z)Eαzm = Mmαk1(z)⇒ ∂mα(k1(z))k1(z)−1 + Uαz
m = Mmα.

Projecting this onto π>0(gln(R)[z, z−1)) yields the formula Mmα = π>0(Uαzm).
If m < 0, then one uses the property thatM<0 is a free gln(R)[z−1, z)-module
with generator ϕ0. Translating the relations ∂mβ(ϕ) = Nmβϕ into equations
in gln(R)[z−1, z) yields:

∂mβ(k2(z)) + k2(z)Eαzm = Nmβk2(z)⇒ ∂mβ(k2(z))k2(z)−1 +Wβz
m+1 = Nmβ

Projecting the right hand side on π<0(gl2(R)[z−1, z) gives us the identity we
are looking for: π<0(Wβz

m+1) = Nmβ. �

Remark 4.2. This concludes the presentation of the algebraic framework of
the linearization of the combined (sln(C), t)-hierarchy. In the next section, we
present an analytic context where we can construct sets of wave matrices of
this hierarchy in which the products are no longer formal, but real.
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5. A construction of solutions of the hierarchy

In this section we will show how to construct a wide class of solutions of the
combined (sln(C), t)-hierarchy. This is done in the style of [41] and [42]. We
first describe the group of loops we will work with. For each 0 < r < 1, let Ar
be the annulus in the complex plane given by

Ar = {z | z ∈ C, r 6 |z| 6 1
r
}.

We denote the collection of holomorphic maps from some annulus Ar into
GLn(C) by Lan GLn(C). It is a group w.r.t. point wise multiplication and con-
tains in a natural way GLn(C) as a subgroup as the collection of constant maps
into GLn(C). Other examples of elements in Lan GLn(C) are the elements of ∆.
However, Lan GLn(C) is more than just a group, it is an infinite dimensional Lie
group. Its manifold structure comes from its Lie algebra Lan gln(C) consisting
of all holomorphic maps γ : U → gln(C), where U is an open neighborhood of
some annulus Ar, 0 < r < 1. Since gln(C) is a Lie algebra, the space Lan gln(C)
becomes a Lie algebra w.r.t. the point wise commutator. Topologically, the
space Lan gln(C) is the direct limit of all the spaces Lan,r gln(C), where this
last space consists of all γ corresponding to the fixed annulus Ar. One gives
each Lan,r gln(C) the topology of uniform convergence and with that topology
it becomes a Banach space. In this way, Lan gln(C) becomes a Fréchet space.
The point wise exponential map defines a local diffeomorphism around zero in
Lan gln(C), see e.g. [43].

Now each loop ` ∈ Lan gln(C) possesses an expansion in a Fourier series

` =
∞∑

k=−∞

`kz
k, with each `k ∈ gln(C),

that converges absolutely on the annulus it is defined:
∞∑

k=−∞

||`k||r−|k| <∞.

This Fourier expansion is used to make the relevant decomposition of the Lie
algebra Lan gln(C). Namely, consider the subspaces

Lan gln(C)>0 := {` | ` ∈ Lan gln(C), ` =
∞∑
k=0

`kz
k}

Lan gln(C)<0 := {` | ` ∈ Lan gln(C), ` =
−1∑

k=−∞

`kz
k}

Both are Lie subalgebras of Lan gln(C) and their direct sum equals the whole
Lie algebra. The first Lie algebra consists of the elements in Lan gln(C) that
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extend to holomorphic maps defined on a disk around the origin of the form

{z ∈ C | |z| 6 1
r
}, 0 < r < 1,

and the second Lie algebra corresponds to the maps in Lan gln(C) that have a
holomorphic extension towards a disk around infinity of the form

{z ∈ P1(C) | |z| > r}, 0 < r < 1,

and that, moreover, are zero at infinity. To each of the two Lie subalgebras
belongs a subgroup of Lan GLn(C). The point wise exponential map applied
to elements of Lan gln(C)<0 yields elements of

U− = {` | γ ∈ Lan gln(C), ` = Id +
−1∑

k=−∞

`kz
k}

and the exponential map applied to elements of Lan gln(C)>0 maps them into

P+ = {` | ` ∈ Lan gln(C), ` = `0 +
∞∑
k=1

`kz
k, with `0 ∈ GLn(C)}.

Both U− and P+ are easily seen to be subgroups of Lan GLn(C) and since the
direct sum of their Lie algebras is Lan gln(C), their product

(35) Ω = U−P+

is open in Lan GLn(C) and is called, like in the finite dimensional case, the big
cell w.r.t. U− and P+.

The next subgroup of Lan SLn(C) corresponds to the exponential factor in
the linearization of the combined (sln(C), t)-hierarchy. The commuting group
relevant for this hierarchy is

Γ = {γ(t) = exp(
∑
m∈Z

r∑
α=1

tmαEαz
i) | γ ∈ Lan SLn(C)}.

The group ∆(t) commutes with Γ and contains the central subgroup

∆c = {δk | δ = z Id, k ∈ Z}

of Lan GLn(C).
We have now all ingredients to describe the construction of the solutions to

the combined (sln(C), t)-hierarchy. Take inside the product Lan GL2(C)×∆(t)
the collection S of pairs (g, δ(l)) such that there exists a γ(t), γ ∈ Γ, satisfying

(36) δ(l)γ(t)gγ(t)−1δ(−l) ∈ Ω = U−P+

For each such a pair (g, δ(l)), consider the collection Γ(g, δ(l)) of all γ(t) ∈ Γ
satisfying the condition (36). This is an open non-empty subset of Γ. Let
R(g, δ(l)) be the algebra of analytic functions Γ(g, δ(l)) → C. This is the
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algebra of functions R that we associate with the point (g, δ(l)) ∈ S and for
the commuting derivations of R(g, δ(l)) we choose the

∂mα :=
∂

∂tmα
, i ∈ Z, 1 6 α 6 r.

By property (36), we have for all γ(t) ∈ Γ(g, δ(l))

(37) δ(l)γ(t)gγ(t)−1δ(−l) = u−(g, δ(l))(t)−1p+(g, δ(l))(t),

with u−(g, δ(l))(t) ∈ U− and p+(g, δ(l))(t) ∈ P+. Then all the matrix coef-
ficients in the Fourier expansions of the elements u−(g, δ(l)) and p+(g, δ(l))
belong to the algebra R(g, δ(l)). From equation (37) one can build two oscil-
lating matrices of type δ(l), one Ψg,δ(l) ∈M>0 and the other one Φg,δ(l) ∈M<0.
Define namely

Ψg,δ(l)(t) : = u−(g, δ(l))(t)δ(l)γ(t),(38)
Φg,δ(l)(t) : = p+(g, δ(l))(t)δ(l)γ(t),(39)

and note that all the products between the different factors are well-defined.
Due to relation (37), these two oscillating matrices of type δ(l) are related by

(40) Ψg,δ(l)(t) = Φg,δ(l)(t)g−1.

From relation (37), one sees directly that for all k ∈ Z we have that if (g, δ(l)) ∈
S, then also each (g, δ(l)δk) ∈ S and the sets of oscillating matrices relate
according to

Ψg,δ(l)δk = Ψg,δ(l)δ
k and Φg,δ(l)δk = Φg,δ(l)δ

k.

Now we want to show that each pair (Ψg,δ(l),Φg,δ(l)) is a set of wave matrices
of the combined (sln(C), t)-hierarchy, by using Proposition 4.1. Thereto we
compute for all m > 0 and α, 1 6 α 6 r, in two ways ∂mα(Ψg,δ(l)), once using
(38) and once using (39) and (40). This yields on one hand

∂mα(Ψg,δ(l)) = {∂mα(u−(g, δ(l))) + u−(g, δ(l))Eαzm}δ(l)γ =

= {∂mα(u−(g, δ(l)))u−(g, δ(l))−1 + u−(g, δ(l))Eαzmu−(g, δ(l))−1}Ψg,δ(l)

and on the other

∂mα(Ψg,δ(l)) = {∂mα(p+(g, δ(l))) + p+(g, δ(l))Eαzj}δ(l)γg−1 =

= {∂mα(p+(g, δ(l)))p+(g, δ(l))−1 + p+(g, δ(l))Eαzmp+(g, δ(l))−1}Ψg,δ(l)

By comparing the two factors in front of Φg,δ(l) in these expressions we see that

Mmα := ∂mα(u−(g, δ(l)))u−(g, δ(l))−1 + u−(g, δ(l))Eαzmu−(g, δ(l))−1

belongs to π>0(gln(R)[z, z−1)). Because of relation (40) we have that also for
Φg,δ(l), there holds for all m > 0 and α, 1 6 α 6 r

∂mα(Φg,δ(l)) = MmαΦg,δ(l).
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We proceed in a similar way with the computation of ∂β(Φg,δ(l)) for all m < 0
and β, 1 6 β 6 r. Then we get the expressions

∂mβ(Φg,δ(l)) = {∂mβ(p+(g, δ(l))) + p+(g, δ(l))Eβzm}δ(l)γg−1 =

= {∂mβ(p+(g, δ(l)))p+(g, δ(l))−1 + p+(g, δ(l))Eβzmp+(g, δ(l))−1}Φg,δ(l)

and

∂mβ(Φg,δ(l)) = {∂mβ(u−(g, δ(l))) + u−(g, δ(l))Eβzm}δ(l)γg =

= {∂mβ(u−(g, δ(l)))u−(g, δ(l))−1 + u−(g, δ(l))Eβzmu−(g, δ(l))−1}Φg,δ(l)

Comparing the two factors in front of Φg,δ(l) in these expressions yields that

Nmβ := ∂mβ(p+(g, δ(l)))p+(g, δ(l))−1 + p+(g, δ(l))Eβzmp+(g, δ(l))−1

belongs to π<0(gln(R)[z−1, z)). Because of relation (40), also for Ψg,δ(l), there
holds for all j < 0

∂mβ(Ψg,δ(l)) = NmβΨg,δ(l).

So we have shown that all the conditions in Proposition 4.1 are satisfied, so
that we may conclude

Theorem 5.1. Consider the product space Π := Lan GL2(C) × ∆(t) and its
subset S defined by (36). For each point (g, δ(l)) ∈ S, we define a pair of
oscillating matrices (Ψg,δ(l),Φg,δ(l)) inM>0×M<0 by (38) and (39). This pair
is a set of wave matrices for the combined (sln(C), t)-hierarchy. In particular,
the deformation ({Uα(g, δ(l))}, {Wβ(g, δ(l))}) of the basis {Eαzm} of C defined
by

Uα(g, δ(l)) = u−(g, δ(l))Eαu−(g, δ(l))−1 and

Wβ(g, δ(l)) = p+(g, δ(l))Eβz−1p+(g, δ(l))−1,

forms a solution of the combined (sln(C), t)-hierarchy. This solution does not
change if one replaces δ(l) by δ(l)δk, k ∈ Z.

Remark 5.2. If one is interested only in the solutions of the (sln(C), t)-hierarchy,
one performs the construction in Theorem 5.1 with for i < 0 all tiα = 0 and
the set {Uα} is then a solution. Similarly, for solutions of the strict (sln(C), t)-
hierarchy, take for all i > 0, tiα = 0, and replace in the obtained {Wβ}, the
loop parameter z by 1

z
.

Conclusion

In this paper we considered three basic Lie algebras of t-loops, where t is a
maximal commutative complex Lie subalgebra of sln(C), but not necessarily
a Cartan subalgebra. The generators of each of them are deformed in three
different ways into sln-loops depending of the commuting flows corresponding
to these basic commutative Lie algebras. The first two deformations preserve
commutativity, the third not, in general. We are interested in those defor-
mations for which the evolution of the deformed generators is described by a
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specific set of Lax equations in each case. These three systems are shown to
be compatible and can also be given in zero curvature form. This leads to the
(sln(C), t)-hierarchy, its strict version and the combined (sln(C), t)-hierarchy,
which can be seen as a merging of the first two. The combined (sln(C), t)-
hierarchy is shown to have a linearization, which enables you to construct a
wide class of solutions of this integrable hierarchy from a space of sln(C)-loops.
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