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Abstract 

We investigate the use of skewness and kurtosis for 

characterizing the morphology of abraded surfaces 

consisting of scratches and corrugated surfaces 

composed of hemispherical grains. Skewness and 

kurtosis were found to be ineffective at 

characterizing corrugated surfaces which were best 

described using the RMS roughness, RMS slope, 

and surface area ratio. Corrugated surfaces with 

RMS roughness values differing by a factor of 5 

exhibited near constant values of skewness and 

kurtosis.  Abraded surfaces, in contrast, produced 

nearly constant values of RMS roughness, RMS 

slope, and surface area ratio while the skewness 

and kurtosis varied significantly.  Hence abraded 

surfaces were found to be well characterized by the 

skewness and kurtosis leading to a simple 

relationship with the number of scratches.   
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1.  Introduction 

In the nineteenth century, it was 

common practice to use the normal 

distribution (ND) to describe any data set 

which had a reasonably high degree of 

symmetry
1
. Pearson, however, observed that 

the deviation of data from the ND was, in 

some cases, very large. He therefore created 

two statistical parameters to quantify how a 

distribution deviated from the ND
2-6

.  The 

skewness Ssk is defined as 

𝑆𝑠𝑘 =
1

𝑁𝜎3
 (𝑧𝑖 − 𝜇)3𝑁

𝑖=1 , (1) 

where 𝑧𝑖  are the data points, 𝜇 is the mean 

value of the data, 𝑁 is the number of data 

points, and 𝜎 is the standard deviation. 

Skewness (Ssk), also known as the third 

moment of the distribution, is used to quantify 

the level of asymmetry in a distribution. 

Skewness is negative when there is a 

preponderance of large data values causing 

the distribution to appear to have a long flat 

tail for smaller values.  Conversely, a positive 

distribution is produced from data dominated 

by smaller values. A skewness of zero 

generally indicates that the distribution is 

symmetric about the mean.  The kurtosis Sku 

is defined as 

𝑆𝑘𝑢 =
1

𝑁𝜎4
 (𝑧𝑖 − 𝜇)4𝑁

𝑖=1 , (2) 

where the symbols have the same meaning as 

above, and indicates the level of flatness or 

sharpness of the distribution.  Kurtosis also 

known as the fourth moment of the 

distribution, is less than 3 when the 

distribution has a shorter and flatter peak 

compared to the ND (also called platykurtic) 

and is greater than 3 when the distribution has 

a longer and sharper peak (leptokurtic) when 

compared to the ND.  Lastly, the kurtosis is 

equal to 3 for the case of a normal 

distribution.   

Skewness and kurtosis are used in a 

number of fields, including surface metrology 

and characterization
7,8

, tribology
9-12

, and 

dental science
13,14

.  The majority of the 

literature has largely been confined to 

discussions of flat surfaces with abrasions 

such as human teeth or mechanical parts 

suffering from wear
9,14

. The use of skewness 

and kurtosis for characterizing surfaces 

composed of hemispherical particles has not 

yet been thoroughly investigated.  

 In this paper, we investigate the 

applicability of the skewness and kurtosis for 

characterizing surfaces composed of 

hemispherical grains as is typically produced 

by sputter deposition and contrast those to the 

more well-known application of abraded 

surfaces.  This work is motivated by recent 

attempts to correlate the sensitivity of 

cantilever sensors to the roughness of the Au 

film used to immobilize the sensing layer on a 

silicon cantilever.  To date, researchers have 

used, almost exclusively, the root-mean-

squared (RMS) roughness for characterizing 

these surfaces however this parameter only 

provides the standard deviation of the surface 

height
7,9,10,13,14

. There is a clear need to better 

describe these surfaces to obtain a clearer 

understanding of the relationship between the 

surface topography of the Au film to the 

sensitivity of cantilever sensors.  

2. Computational Details 

To generate specific surfaces, a program 

was written to produce surfaces composed of 

hemispherical features and flat surfaces with 

scratch patterns. The corrugated surfaces were 

generated by first creating a two-dimensional 

grid. On each grid point (xi, yj), an inverted 

paraboloid, as defined in equation 3, was 

created to simulate the hemispherical grains. 

 𝑧(𝑥,𝑦) = 𝑐  
(𝑥−𝑥𝑖)

2

𝑎2 +
(𝑦−𝑦𝑗 )2

𝑏2  + 𝑧0, 𝑐 < 0 (3) 

The shape of the inverted paraboloid 

was controlled by the parameters 𝑎, 𝑏, 𝑐, and 

𝑧0where a and b control the level of curvature 
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along the x and y direction, c controls the 

elongation, and zo sets the base height of the 

paraboloid. In all cases a was set equal to b to 

ensure that the particles appeared spherical.  

In order to reproduce actual surfaces as best 

as possible, each parameter in equation 3 was 

allowed to fluctuate between 0 - 20%. An 

example of a simulated surface is shown in 

fig. 1a and compared to an image taken by 

atomic force microscopy of an actual Au 

surface shown in figure 1b.  As can be seen 

the two surfaces are strikingly similar.      

 

Figure 1: a) A surface image from the corrugated surface simulation. b) An AFM image of a gold 

film produced by sputter deposition. The colour contrast scale from dark (low points) to light 

(high points) represents a height change of 19 nm. c) Simulated abraded surface with 210 

scratches; d) An optical image of abraded 100Cr6 (AISI 52100) ball bearing steel. 

Surfaces with scratches were simulated 

starting with a flat surface (z = 0).  Each 

scratch was defined by a half cylinder of 

radius r embedded in the surface such that the 

central axis of the cylinder remained in the z = 

0 plane.  The direction and position of each 

scratch were chosen at random and were 

defined by a vector 𝑁    normal to the central 

axis and lying in the z = 0 plane and a point 𝑝  
on the central axis respectively.   The depth, z, 

at each point 𝑎  of the scratch was defined by 

𝑧 =  − 𝑟2 − 𝐿2 where L is given by equation 

4
15

: 

 𝐿 =  
𝑁   ∙(𝑎  −𝑝 )

 𝑁    
. (4) 



Quarterly Physics Review, Vol. 3, Issue 3, October 2017 

A Computational Analysis of the Application of Skewness and Kurtosis to Corrugated and Abraded Surfaces 

Copyright 2017 KEI Journals. All Rights Reserved                                                                              Page │4 

This definition for z ensures that only 

values of 𝑎  for which r
2
 > L

2
 are used to 

define the scratch. The scratches are then 

distributed across the surface using a user-

defined distribution of coarse, medium, fine, 

and superfine scratches.  As can be seen in 

fig. 1, the surfaces created by our algorithm 

shown in fig. 1c appear remarkably similar to 

the optical image taken of an actual abraded 

surface shown in fig. 1d.  

To calculate the roughness parameters 

of a surface, the primary profile of the surface 

must first be filtered to separate the waviness 

and roughness profiles (see fig. 2). This is 

accomplished by convolving a matrix 

containing the 2D surface data, 𝑧𝑖𝑗 , with a 

Gaussian weighting matrix, whose entries are 

given by equation 5
16

, 

ℎ𝑖𝑗 =
1

𝛼𝜆𝑐
𝑒
−𝜋(

𝑧𝑖𝑗

𝛼𝜆𝑐
)2

, (5) 

where 𝛼 =  
In  (2)

𝜋
, and 𝜆𝑐  is the filter cut-off 

wavelength. The matrix convolution is 

accomplished through the use of a Fast 

Fourier Transform (FFT) by means of the 

Convolution Theorem, 

ℎ𝑖𝑗 ∗ 𝑧𝑖𝑗 = ℱ−1  ℱ ℎ𝑖𝑗  .ℱ 𝑧𝑖𝑗   , (6) 

where * denotes the convolution operator, and 

ℱ and ℱ−1 denote the FFT and inverse FFT 

respectively. 

 

Figure 2: a) The primary surface profile is b) fitted with a weighted Gaussian moving average (red 

line) called the waviness profile. The primary profile is split into the c) roughness and d) waviness 

profiles by taking the difference of the primary and roughness profiles. 
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After the surface was filtered, it is was 

characterized by calculating the skewness and 

kurtosis as defined above as well as the RMS 

roughness, 𝑆𝑞 , the surface area ratio, 𝑆𝑑𝑟 , and 

the RMS slope, 𝑆𝑑𝑞 , as defined elsewhere
17

. 

Because the surfaces were created with an 

initial set of parameters which were then 

randomized within a percent range, each 

surface with the given set of initial parameters 

(defined in equations 3 and 4) plus 

fluctuations was created ten times and the 

average values of the surface characterization 

parameters listed above were calculated and 

reported below.  The error bars show the 

average of the maximum and minimum value 

obtained for each parameter. 

3. Results 

For corrugated surfaces, it is useful to 

plot the statistical parameters against the 𝑎  

parameter (from equation 3) normalized with 

respect to the average nearest neighbour 

distance (NND). We define 𝑁𝑁𝐷 =  
 𝑁

𝑔
, 

where 𝑁 is the number of particles on the 

surface and 𝑔 is the grid size. Thus, we define 

the dimensionless quantity 𝑎∗ =
𝑎

𝑁𝑁𝐷
. Figure 

3a shows the RMS roughness (blue), RMS 

slope (black), surface area ratio (red), kurtosis 

(green), and skewness (purple) plotted for 

corrugated surfaces as a function of the 

parameter 𝑎∗. As a* increases the 

hemispherical surface features become broad 

and flat. The data in figure 3a is shown for 

four different values of c which defines the 

vertical elongation of the particles.  Therefore 

the hemispherical surface features with c = 70 

will be longer than those defined with c = 10. 

As can be seen, the RMS roughness, RMS 

slope, and surface area ratio all increase with 

decreasing values of a* and also increase with 

increasing c.  This result is not surprising 

since the parameter a* controls the in-plane 

particle size while the c parameter controls 

the elongation of the hemispherical particles 

causing the surface to become rougher and 

surface area to become larger.  In contrast to 

these parameters the kurtosis and skewness 

remain constant with changes in both a* and 

c. This is because the shape of the distribution 

is affected little for these types of surfaces. 

Typically the distribution of hemispherical 

surfaces is skewed to the left causing the 

skewness to consistently be negative. This 

also causes the distributions to be slightly 

wider than the normal distribution causing the 

kurtosis to be slightly greater than 3.  Figure 

3b shows the same surface characterization 

parameters, calculated for abraded surfaces, 

indicated with the same colors as in fig 3a 

versus the percent surface coverage of the 

substrate. The percent surface coverage is the 

ratio of the area created by the scratches 

divided by the initial area of the substrate. 

Therefore the larger the percent surface 

coverage the greater the number of scratches 

on the surface.  As can be seen in fig. 3b, the 

RMS roughness, the RMS slope, and the 

surface area ratio are relatively unaffected by 

the number of scratches. This is because for 

typical scratch patterns produced by repeated 

abrasion through wear, the variability of the 

scratches is very small within the range of the 

smallest scratch to the largest. This is 

consistent with results from Sedlaček et al
8
. 

This causes the RMS roughness, RMS slope, 

and the surface area ratio to change very little. 

In contrast to these parameters, the kurtosis 

and skewness both show a significant change 

with the percent coverage.  

Figure 3c, shows a plot of kurtosis vs 

skewness for abraded surfaces.  Since the 

skewness and the kurtosis for abraded 

surfaces are both simple functions of the 

surface coverage, it is not surprising that 

kurtosis versus skewness be characterized by 

a simple curve as well.  Although this is not a 

sufficient condition for the application of 

skewness and kurtosis, it is a necessary 

condition for surface characterization, and 

thus hints at the usefulness of these 

parameters. 
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Figure 3: a) The RMS roughness (blue), RMS slope (black), surface area ratio (red), kurtosis 

(green) and skewness (purple) for corrugated surfaces, plotted against the parameter a*. Circles 

represent c = 10, squares represent c = 30, triangles represent c = 50, and diamonds represent          

c = 70. b) The RMS roughness, RMS slope, surface area ratio, kurtosis, and skewness for abraded 

surfaces plotted against percentage surface coverage. c) Kurtosis vs skewness for abraded surfaces. 

Although the surfaces analyzed in figure 

3 were generated with a distribution of 5%, 

10%, 25%, and 60% coarse, medium, fine, 

and superfine scratches, the above behaviour 

was observed with multiple scratch 

distributions.   Figure 4 shows the kurtosis 

versus skewness for abraded surfaces with 

coarse, medium, fine, and superfine scratch 

distributions as follows: (5%, 5%, 10%, 80%), 

(5%, 10%, 25%, 60%), (10%, 20%, 40%, 

30%), (20%,40%,30%,10%), (40%, 30%, 

20%, 10%).  As can be seen the kurtosis 

versus skewness all fall on one universal 

curve.  With the RMS roughness displayed 

with color, it can be seen that the RMS 

roughness changes proportionally with both 

the kurtosis and the skewness.  
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Figure 4: Kurtosis versus skewness for abraded surfaces with 5 different scratch distributions. 

The color of the data indicates the RMS roughness of the surfaces. The arrows indicate the 

direction of increased surface coverage for each scratch distribution. 

4. Discussion 

For corrugated surfaces the skewness 

and kurtosis remained constant at values of 

𝑆𝑠𝑘 ≈  −1 and Sku ≈ 3 while for abraded 

surfaces the skewness and kurtosis settle at 

values of 𝑆𝑠𝑘 ≈  1 and Sku  3  as the coverage 

goes to 100%. This behaviour is due to the 

fact that, as an abraded surface becomes 

completely covered with scratches, the 

surface begins to resemble an inverted 

corrugated surface which has a similar value 

of kurtosis and negative value of skewness. A 

comparison of the cross-sections of both an 

inverted abraded surface and a corrugated 

surface is shown in fig. 5. The above result 

can be understood by realizing that abraded 

surfaces are the intermediate step between a 

perfectly flat surface to a corrugated surface 

as interpreted by the statistical parameters Sq, 

Sdr, Sdq, Sku, and Ssk.   When a surface begins 

to be textured through wear or abrasion, the 

RMS roughness, RMS slope, and surface area 

ratio change little while the skewness and 

kurtosis start from initial high negative and 

positive values (respectively) and begin to 

increase and decrease respectively. This is 

because the initial surface is dominated by z = 

0 values which causes a sharp negatively 

skewed distribution.  As the surface coverage 

reaches 100% the kurtosis and skewness reach 

a steady state.  As the surface features become 

more pronounced the kurtosis and skewness 

remain approximately constant while the 

RMS roughness, RMS slope and the surface 

area ratio begin to increase in value.   

5. Conclusions 

This work has examined the 

characterization of the topography of two 

types of surfaces. Corrugated surfaces were 

found to be well characterized by the RMS 

roughness, surface area ratio, and RMS slope 

as indicators of the level of corrugation (or 

roughness) of each surface.  These values are 

analogous to the grit values used to 
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characterize the roughness of sandpaper.  The 

kurtosis and skewness, however, showed no 

direct correlation with the roughness of the 

corrugated surfaces and as a result were found 

to be poor indicators for characterizing such 

surfaces.  In contrast, the skewness and 

kurtosis of abraded surfaces were found to be 

the key indicators for characterizing these 

types of surfaces which are found to differ not 

in terms of their roughness but instead in 

terms of their level of abrasion described here 

as the surface area coverage. Further, the 

variation of individual surface features does 

not impact the skewness or kurtosis for 

abraded surfaces, which supports the idea that 

an abraded surface can be described by its 

degree of surface coverage. 

Because the surface characterization 

parameters are not a function of the in-plane 

distances but only a function of the surface 

height, the analyses presented here are 

applicable to any type of surface with similar 

surface features from thin films to orange peel 

surfaces of poorly painted surfaces or macro- 

to micro-sized abrasions.  
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